Parallel Processing Transport Model MT3DMS by Using OpenMP
Linxian Huang,
Lichun Wang,
Jingli Shao,
Xingwei Liu,
Qichen Hao,
Liting Xing,
Lizhi Zheng and
Yong Xiao
Additional contact information
Linxian Huang: School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
Lichun Wang: Department of Geological Sciences, University of Texas, Austin, TX 78705, USA
Jingli Shao: School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
Xingwei Liu: School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
Qichen Hao: Institute of Hydrogeology and Environment Geology, CAGS, Shijiazhuang 050000, China
Liting Xing: School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
Lizhi Zheng: Department of Geological Sciences, University of Texas, Austin, TX 78705, USA
Yong Xiao: Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610031, China
IJERPH, 2018, vol. 15, issue 6, 1-16
Abstract:
Solute transport modeling resolves advection, dispersion, and chemical reactions in groundwater systems with its accuracy depending on the resolution of domain at all scales, thus the computational efficiency of a simulator becomes a bottleneck for the wide application of numerical simulations. However, the traditional serial numerical simulators have reached their limits for the prohibitive computational time and memory requirement in solving large-scale problems. These limitations have greatly hindered the wide application of groundwater solute transport modeling. Thus, the development of an efficient method for handling large-scale groundwater solute transport simulation is urgently required. In this study, we developed and assessed a parallelized MT3DMS (Modular Three-Dimensional Multispecies Transport Model) by using OpenMP (Open specifications for Multi-Processing) to accelerate the solute transport simulation process. The parallelization was achieved by adding OpenMP compile directives (i.e., defining various types of parallel regions) into the most time-consuming packages, including the Advection package (ADV), Dispersion package (DSP), and Generalized Conjugate Gradient Solver package (GCG). This allows parallel processing on shared-memory multiprocessors, i.e., both the memory requirement and computing efforts are automatically distributed among all processors. Moreover, we discussed two different parallelization strategies for handling numerical models with either many layers or few layers. The performance of parallelized MT3DMS was assessed by two benchmark numerical models with different model domain sizes via a workstation with two quad-core processors. Results showed that the running time of parallelized MT3DMS can be 4.15 times faster than that using sequential MT3DMS. The effects of using different preconditioners (procedures that transform a given problem into a form that is more suitable for numerical solving methods) in the GCG package were additionally evaluated. The modified strategy for handling numerical models with few layers also achieved satisfactory results with running time two times faster than that via sequential simulation. Thus, the proposed parallelization allows high-resolution groundwater transport simulation with higher efficiency for large-scale or multimillion-cell simulation problems.
Keywords: parallel computing; solute transport modeling; MT3DMS; OpenMP (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1660-4601/15/6/1063/pdf (application/pdf)
https://www.mdpi.com/1660-4601/15/6/1063/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:15:y:2018:i:6:p:1063-:d:148749
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().