Impact of Vegetative Treatment Systems on Multiple Measures of Antibiotic Resistance in Agricultural Wastewater
Lisa M. Durso,
Daniel N. Miller and
Christopher G. Henry
Additional contact information
Lisa M. Durso: United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Agroecosystem Management Research Unit, 251 Filley Hall, UNL East Campus Lincoln, Lincoln, NE 68583, USA
Daniel N. Miller: United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Agroecosystem Management Research Unit, 251 Filley Hall, UNL East Campus Lincoln, Lincoln, NE 68583, USA
Christopher G. Henry: Rice Research and Extension Center, University of Arkansas, Stuttgart, AR 72160, USA
IJERPH, 2018, vol. 15, issue 7, 1-13
Abstract:
Wastewater is an important vector of antibiotic resistant bacteria and antibiotic resistance genes (ARB/G). While there is broad agreement that ARB/G from agricultural (ag) wastewaters can be transported through the environment and may contribute to untreatable infectious disease in humans and animals, there remain large knowledge gaps surrounding applied details on the types and amounts of ARB/G associated with different agricultural wastewater treatment options and different ag production systems. This study evaluates a vegetative treatment system (VTS) built to treat the wastewater from a beef cattle feedlot. Samples were collected for three years, and plated on multiple media types to enumerate tetracycline and cefotaxime-resistant bacteria. Enterobacteriaceae isolates ( n = 822) were characterized for carriage of tetracycline resistance genes, and E. coli isolates ( n = 673) were phenotyped to determine multi-drug resistance (MDR) profiles. Tetracycline resistance in feedlot runoff wastewater was 2-to-3 orders of magnitude higher compared to rainfall runoff from the VTS fields, indicating efficacy of the VTA for reducing ARB over time following wastewater application. Clear differences in MDR profiles were observed based on the specific media on which a sample was plated. This result highlights the importance of method, especially in the context of isolate-based surveillance and monitoring of ARB in agricultural wastewaters.
Keywords: antibiotic resistance; agriculture; wastewater; manure; cattle; antibiotic resistant bacteria; antibiotic resistance gene; tetracycline resistance gene; environment; vegetative treatment system (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1660-4601/15/7/1295/pdf (application/pdf)
https://www.mdpi.com/1660-4601/15/7/1295/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:15:y:2018:i:7:p:1295-:d:153560
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().