EconPapers    
Economics at your fingertips  
 

A Data-Driven Assessment of the Metabolic Syndrome Criteria for Adult Health Management in Taiwan

Ming-Shu Chen and Shih-Hsin Chen
Additional contact information
Ming-Shu Chen: Department of Healthcare Administration, Oriental Institute of Technology, New Taipei City 22061, Taiwan
Shih-Hsin Chen: Department of Information Management, Cheng Shiu University, Kaohsiung City 83347, Taiwan

IJERPH, 2018, vol. 16, issue 1, 1-11

Abstract: According to the modified Adult Treatment Panel III, five indices are used to define metabolic syndrome (MetS): waist circumference (WC), high blood pressure, fasting glucose, triglycerides (TG), and high-density lipoprotein cholesterol. Our work evaluates the importance of these indices. In addition, we attempted to identify whether trends and patterns existed among young, middle-aged, and older people. Following the analysis, a decision tree algorithm was used to analyze the importance of the five criteria for MetS because the algorithm in question selects the attribute with the highest information gain as the split node. The most important indices are located on the top of the tree, indicating that these indices can effectively distinguish data in a binary tree and the importance of this criterion. That is, the decision tree algorithm specifies the priority of the influence factors. The decision tree algorithm examined four of the five indices because one was excluded. Moreover, the tree structures differed among the three age groups. For example, the first key index for middle-aged and older people was TG whereas for younger people it was WC. Furthermore, the order of the second to fourth indices differed among the groups. Because the key index was identified for each age group, researchers and practitioners could provide different health care strategies for individuals based on age. High-risk middle-aged and healthy older people maintained low values of TG, which might be the most crucial index. When a person can avoid the first and second indices provided by the decision tree, they are at lower risk of MetS. Therefore, this paper provides a data-driven guideline for MetS prevention.

Keywords: metabolic syndrome (MetS); decision tree; risk factors assessment; health management (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1660-4601/16/1/92/pdf (application/pdf)
https://www.mdpi.com/1660-4601/16/1/92/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:16:y:2018:i:1:p:92-:d:194093

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:16:y:2018:i:1:p:92-:d:194093