EconPapers    
Economics at your fingertips  
 

Toward Value-Based Healthcare through Interactive Process Mining in Emergency Rooms: The Stroke Case

Gema Ibanez-Sanchez, Carlos Fernandez-Llatas, Antonio Martinez-Millana, Angeles Celda, Jesus Mandingorra, Lucia Aparici-Tortajada, Zoe Valero-Ramon, Jorge Munoz-Gama, Marcos Sepúlveda, Eric Rojas, Víctor Gálvez, Daniel Capurro and Vicente Traver
Additional contact information
Gema Ibanez-Sanchez: SABIEN-ITACA, Universitat Politècnica de València, 46022 València, Spain
Carlos Fernandez-Llatas: SABIEN-ITACA, Universitat Politècnica de València, 46022 València, Spain
Antonio Martinez-Millana: SABIEN-ITACA, Universitat Politècnica de València, 46022 València, Spain
Angeles Celda: Hospital General de Valencia, Av. de les Tres Creus, 2, 46014 València, Spain
Jesus Mandingorra: Hospital General de Valencia, Av. de les Tres Creus, 2, 46014 València, Spain
Lucia Aparici-Tortajada: SABIEN-ITACA, Universitat Politècnica de València, 46022 València, Spain
Zoe Valero-Ramon: SABIEN-ITACA, Universitat Politècnica de València, 46022 València, Spain
Jorge Munoz-Gama: School of Engineering, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile
Marcos Sepúlveda: School of Engineering, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile
Eric Rojas: School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile
Víctor Gálvez: School of Engineering, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile
Daniel Capurro: School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile
Vicente Traver: SABIEN-ITACA, Universitat Politècnica de València, 46022 València, Spain

IJERPH, 2019, vol. 16, issue 10, 1-22

Abstract: The application of Value-based Healthcare requires not only the identification of key processes in the clinical domain but also an adequate analysis of the value chain delivered to the patient. Data Science and Big Data approaches are technologies that enable the creation of accurate systems that model reality. However, classical Data Mining techniques are presented by professionals as black boxes. This evokes a lack of trust in those techniques in the medical domain. Process Mining technologies are human-understandable Data Science tools that can fill this gap to support the application of Value-Based Healthcare in real domains. The aim of this paper is to perform an analysis of the ways in which Process Mining techniques can support health professionals in the application of Value-Based Technologies. For this purpose, we explored these techniques by analyzing emergency processes and applying the critical timing of Stroke treatment and a Question-Driven methodology. To demonstrate the possibilities of Process Mining in the characterization of the emergency process, we used a real log with 9046 emergency episodes from 2145 stroke patients that occurred from January 2010 to June 2017. Our results demonstrate how Process Mining technology can highlight the differences between the flow of stroke patients compared with that of other patients in an emergency. Further, we show that support for health professionals can be provided by improving their understanding of these techniques and enhancing the quality of care.

Keywords: process mining; stroke; emergency; value-based healthcare; interactive (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1660-4601/16/10/1783/pdf (application/pdf)
https://www.mdpi.com/1660-4601/16/10/1783/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:16:y:2019:i:10:p:1783-:d:232784

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:16:y:2019:i:10:p:1783-:d:232784