EconPapers    
Economics at your fingertips  
 

Contributions of Indoor and Outdoor Sources to Ozone in Residential Buildings in Nanjing

Yu Huang, Zhe Yang and Zhi Gao
Additional contact information
Yu Huang: School of Architecture and Urban Planning, Nanjing University, 22 Hankou Road, Nanjing 210093, China
Zhe Yang: School of Architecture and Urban Planning, Nanjing University, 22 Hankou Road, Nanjing 210093, China
Zhi Gao: School of Architecture and Urban Planning, Nanjing University, 22 Hankou Road, Nanjing 210093, China

IJERPH, 2019, vol. 16, issue 14, 1-16

Abstract: Ozone has become one of the most serious air pollutants in China in recent years. Since people spend most of their time indoors, the ozone in the indoor environment could be a major factor affecting the occupants’ health. The indoor ozone in residential buildings mainly comes from two sources: outdoor atmosphere and indoor ozone produced by electrical devices. In this study, a typical residence in Nanjing was taken as an example to calculate and compare the contributions of indoor and outdoor sources to ozone in the building. A questionnaire survey about the type, the placement, and the frequency of use of the ozone emission devices was performed to provide the basis for the settings of indoor ozone sources. The multi-zone software CONTAM was used hourly to simulate the ozone concentration in summer and in winter with inner doors either closed or open, and it was noted whether there were ozone emission devices indoors or not. Source contribution was quantified and compared by three methods in this paper: (1) the average indoor/outdoor (I/O) ratio, (2) the I/O ratio frequency, and (3) the ratio of indoor ozone concentration without ozone sources to that with ozone sources. The results showed that the contribution of outdoor sources was much greater than that of indoor sources in summer, but in winter, the frequency of I/O > 1 could reach 55.8% of the total seasonal time, and the ratio of indoor ozone concentration without sources to that with sources could reach as high as 74.3%. This meant that the indoor concentration had the potential to exceed the outdoor. Furthermore, human respiratory exposure in different ages and genders was calculated. It was found that teenagers aged 10–18 years old and female adults had a higher respiratory exposure level.

Keywords: ozone; contributions; CONTAM; I/O ratio; respiratory exposure (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1660-4601/16/14/2587/pdf (application/pdf)
https://www.mdpi.com/1660-4601/16/14/2587/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:16:y:2019:i:14:p:2587-:d:249994

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:16:y:2019:i:14:p:2587-:d:249994