Self-Selected Pacing during a 24 h Track Cycling World Record
Beat Knechtle,
Thomas Rosemann and
Pantelis Theodoros Nikolaidis
Additional contact information
Beat Knechtle: Medbase St. Gallen Am Vadianplatz, 9000 St. Gallen, Switzerland
Thomas Rosemann: Institute of Primary Care, University of Zurich, 8006 Zurich, Switzerland
Pantelis Theodoros Nikolaidis: Exercise Physiology Laboratory, 18450 Nikaia, Greece
IJERPH, 2019, vol. 16, issue 16, 1-10
Abstract:
The present case study analyzed the pacing in a self-paced world record attempt during a 24 h track cycling event by the current world record holder. The cyclist completed 3767 laps on a 250 m long cycling track and covered a total distance of 941.873 km, breaking the existing world record by 37.99 km. The average cycling speed was 39.2 ± 1.9 km/h (range 35.5–42.8 km/h) and the power output measured was 214.5 ± 23.7 W (range 190.0–266.0 W) during the 24 h of cycling. We found a positive pacing result with negative correlations between cycling speed ( r = −0.73, p < 0.001), power output ( r = −0.66, p < 0.001), and laps per hour ( r = −0.73, p < 0.001) and the covered distance. During the 24 h, we could identify four different phases: the first phase lasting from the start till the fourth hour with a relatively stable speed; the second phase from the fourth till the ninth hour, characterized by the largest decrease in cycling speed; the third phase from the ninth hour till the 22nd hour, showing relatively small changes in cycling speed; and the last phase from the 22nd hour till the end, presenting a final end spurt. The performance in the 24 h track cycling was 45.577 km better than in the 24 h road cycling, where the same athlete cycled slower but with higher power output. In summary, the current world-best ultracyclist covered more kilometers with less power output during the world record 24 h track cycling than during his world record 24 h road cycling. This was most probably due to the more favorable environmental conditions in the velodrome, which has no wind and stable temperatures.
Keywords: bike; ultraendurance; athlete; cycling speed; power output (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1660-4601/16/16/2943/pdf (application/pdf)
https://www.mdpi.com/1660-4601/16/16/2943/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:16:y:2019:i:16:p:2943-:d:258137
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().