Exploring Epigenetic Age in Response to Intensive Relaxing Training: A Pilot Study to Slow Down Biological Age
Sofia Pavanello,
Manuela Campisi,
Francesco Tona,
Carlo Dal Lin and
Sabino Iliceto
Additional contact information
Sofia Pavanello: Occupational Medicine, Department of Cardiac, Thoracic, and Vascular Sciences and Public Health, University Hospital of Padua, Via Giustiniani, 2, 35128 Padova, Italy
Manuela Campisi: Occupational Medicine, Department of Cardiac, Thoracic, and Vascular Sciences and Public Health, University Hospital of Padua, Via Giustiniani, 2, 35128 Padova, Italy
Francesco Tona: Clinical Cardiology, Department of Cardiac, Thoracic, and Vascular Sciences and Public Health, University Hospital of Padua, Via Giustiniani, 2, 35128 Padova, Italy
Carlo Dal Lin: Clinical Cardiology, Department of Cardiac, Thoracic, and Vascular Sciences and Public Health, University Hospital of Padua, Via Giustiniani, 2, 35128 Padova, Italy
Sabino Iliceto: Clinical Cardiology, Department of Cardiac, Thoracic, and Vascular Sciences and Public Health, University Hospital of Padua, Via Giustiniani, 2, 35128 Padova, Italy
IJERPH, 2019, vol. 16, issue 17, 1-14
Abstract:
DNA methylation (DNAm) is an emerging estimator of biological aging, i.e., the often-defined “epigenetic clock”, with a unique accuracy for chronological age estimation (DNAmAge). In this pilot longitudinal study, we examine the hypothesis that intensive relaxing training of 60 days in patients after myocardial infarction and in healthy subjects may influence leucocyte DNAmAge by turning back the epigenetic clock. Moreover, we compare DNAmAge with another mechanism of biological age, leucocyte telomere length (LTL) and telomerase. DNAmAge is reduced after training in healthy subjects ( p = 0.053), but not in patients. LTL is preserved after intervention in healthy subjects, while it continues to decrease in patients ( p = 0.051). The conventional negative correlation between LTL and chronological age becomes positive after training in both patients ( p < 0.01) and healthy subjects ( p < 0.05). In our subjects, DNAmAge is not associated with LTL. Our findings would suggest that intensive relaxing practices influence different aging molecular mechanisms, i.e., DNAmAge and LTL, with a rejuvenating effect. Our study reveals that DNAmAge may represent an accurate tool to measure the effectiveness of lifestyle-based interventions in the prevention of age-related diseases.
Keywords: epigenetic age; DNA methylation age; relaxing training; telomere length; myocardial infarction patient; telomerase (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1660-4601/16/17/3074/pdf (application/pdf)
https://www.mdpi.com/1660-4601/16/17/3074/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:16:y:2019:i:17:p:3074-:d:260535
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().