EconPapers    
Economics at your fingertips  
 

Exploration of Medical Trajectories of Stroke Patients Based on Group-Based Trajectory Modeling

Ting-Ying Chien, Mei-Lien Lee, Wan-Ling Wu and Hsien-Wei Ting
Additional contact information
Ting-Ying Chien: Department of Computer Science and Engineering, Yuan Ze University, Taoyuan City 320, Taiwan
Mei-Lien Lee: Department of Computer Science and Engineering, Yuan Ze University, Taoyuan City 320, Taiwan
Wan-Ling Wu: Department of Computer Science and Engineering, Yuan Ze University, Taoyuan City 320, Taiwan
Hsien-Wei Ting: Graduate Program in Biomedical Informatics, Yuan Ze University, Taoyuan City 320, Taiwan

IJERPH, 2019, vol. 16, issue 18, 1-11

Abstract: A high mortality rate is an issue with acute cerebrovascular disease (ACVD), as it often leads to a high medical expenditure, and in particular to high costs of treatment for emergency medical conditions and critical care. In this study, we used group-based trajectory modeling (GBTM) to study the characteristics of various groups of patients hospitalized with ACVD. In this research, the patient data were derived from the 1 million sampled cases in the National Health Insurance Research Database (NHIRD) in Taiwan. Cases who had been admitted to hospitals fewer than four times or more than eight times were excluded. Characteristics of the ACVD patients were collected, including age, mortality rate, medical expenditure, and length of hospital stay for each admission. We then performed GBTM to examine hospitalization patterns in patients who had been hospitalized more than four times and fewer than or equal to eight times. The patients were divided into three groups according to medical expenditure: high, medium, and low groups, split at the 33rd and 66th percentiles. After exclusion of unqualified patients, a total of 27,264 cases (male/female = 15,972/11,392) were included. Analysis of the characteristics of the ACVD patients showed that there were significant differences between the two gender groups in terms of age, mortality rate, medical expenditure, and total length of hospital stay. In addition, the data were compared between two admissions, which included interval, outpatient department (OPD) visit after discharge, OPD visit after hospital discharge, and OPD cost. Finally, the differences in medical expenditure between genders and between patients with different types of stroke—ischemic stroke, spontaneous intracerebral hemorrhage (sICH), and subarachnoid hemorrhage (SAH)—were examined using GBTM. Overall, this study employed GBTM to examine the trends in medical expenditure for different groups of stroke patients at different admissions, and some important results were obtained. Our results demonstrated that the time interval between subsequent hospitalizations decreased in the ACVD patients, and there were significant differences between genders and between patients with different types of stroke. It is often difficult to decide when the time has been reached at which further treatment will not improve the condition of ACVD patients, and the findings of our study may be used as a reference for assessing outcomes and quality of care for stroke patients. Because of the characteristics of NHIRD, this study had some limitations; for example, the number of cases for some diseases was not sufficient for effective statistical analysis.

Keywords: group-based trajectory modeling; ischemic stroke; medical expenditure; national health insurance research database; spontaneous intracerebral hemorrhage (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1660-4601/16/18/3472/pdf (application/pdf)
https://www.mdpi.com/1660-4601/16/18/3472/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:16:y:2019:i:18:p:3472-:d:268327

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:16:y:2019:i:18:p:3472-:d:268327