Icariin Treatment Enhanced the Skeletal Response to Exercise in Estrogen-Deficient Rats
Renqing Zhao,
Wenqian Bu and
Yingfeng Chen
Additional contact information
Renqing Zhao: College of Physical Education, Yangzhou University, 88 Daxue South Rd, Yangzhou 225009, Jiangsu, China
Wenqian Bu: College of Physical Education, Yangzhou University, 88 Daxue South Rd, Yangzhou 225009, Jiangsu, China
Yingfeng Chen: College of Physical Education, Yangzhou University, 88 Daxue South Rd, Yangzhou 225009, Jiangsu, China
IJERPH, 2019, vol. 16, issue 19, 1-10
Abstract:
Estrogen deficiency frequently leads to a fall in estrogen receptor-α (ERα) numbers and then reduces the skeletal response to mechanical strain. It, however, is still unclear whether phytoestrogen administration will enhance the effects of exercise on the estrogen-deficient bone loss. This study aimed to determine the effect of Icariin treatment on the response of osteogenic formation to exercise in ovariectomized (OVX) rats. Thirty-two 3-month old female Sprague–Dawley rats were randomly allocated into four groups: (1) Sham-operated (SO); (2) OVX; (3) OVX plus exercise (EX); and (4) OVX plus exercise and Icariin (EI). After 8-week interventions, the rats were killed and samples were collected for bone morphometry, reverse transcription-polymerase chain reaction (RT-PCR), and Western blot analyses. EI interventions showed a greater improvement for the OVX-induced bone loss and the elevated serum tartrate-resistant acid phosphatase (TRAP) and alkaline phosphatase (ALP) compared with EX only. Both EX and EI interventions bettered the OVX-related reduction of BV/TV and trabecular number and thickness, and decreased the enlargement of trabecular bone separation (Tb. Sp); the improvement for BV/TV and Tb. Sp was greater in EI group. Furthermore, EX and EI treatment significantly increased the number of ALP + cells and mineralized nodule areas compared with OVX group; the change was higher in EI group. Additionally, in comparison to OVX rats, the protein and mRNA expression of β-catenin, phosphorylated-Akt (p-Akt) or Akt, ERα, and Runt-related transcription factor 2 (Runx2) in osteoblasts were elevated in EX and EI intervention rats, with greater change observed in EI group. The upregulated β-catenin and Akt mRNA levels in EX and EI groups was depressed by ICI182780 treatment, and the difference in β-catenin and Akt mRNA levels between EX and EI groups was no longer significant. Conclusively, the combination of Icariin and exercise significantly prevent OVX-induced bone loss and increase osteoblast differentiation and the ability of mineralization compared with exercise alone; the changes might be regulated partly by ERα/Akt/β-catenin pathway.
Keywords: exercise; icariin; osteoporosis; estrogen; osteoblast (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1660-4601/16/19/3779/pdf (application/pdf)
https://www.mdpi.com/1660-4601/16/19/3779/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:16:y:2019:i:19:p:3779-:d:274266
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().