Removal of High Concentrations of Ammonium from Groundwater in a Pilot-Scale System through Aeration at the Bottom Layer of a Chemical Catalytic Oxidation Filter
Wushou Zhang,
Ruifeng Zhang,
Yanfeng Yang,
Tinglin Huang and
Gang Wen
Additional contact information
Wushou Zhang: Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi’an University of Architecture and Technology, Xi’an 710055, China
Ruifeng Zhang: School of Urban Planning and municipal engineering, Xi’an Polytechnic University, Xi’an 710048, China
Yanfeng Yang: Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi’an University of Architecture and Technology, Xi’an 710055, China
Tinglin Huang: Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi’an University of Architecture and Technology, Xi’an 710055, China
Gang Wen: Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi’an University of Architecture and Technology, Xi’an 710055, China
IJERPH, 2019, vol. 16, issue 20, 1-12
Abstract:
To remove high concentrations of ammonium from groundwater, pure oxygen and compressed air were fed into a chemical catalytic filter and the ammonium removal efficiency was investigated. The experimental results showed that the oxygen content is the critical limiting factor for ammonium removal. Aeration with 40 mL/min pure oxygen or 100 mL/min compressed air from the bottom of the filter supplied adequate oxygen and approximately 4.2 mg/L of ammonium was removed in this process. Moreover, when the aeration device was moved to 1/3 of the height of the filter bed, the required flow rates of pure oxygen and compressed air decreased further and the turbidity removal was improved. Pouring ozone gas into the filter system, which can inactivate bacteria effectively, can also obtain the remarkable ammonium removal, indicating that ammonium removal was mainly due to the chemical catalytic oxidation in this process rather than the biodegradation. This study provides a novel method for removing high concentrations of ammonium from groundwater.
Keywords: drinking water; ammonium; filtration; chemical catalytic oxidation (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1660-4601/16/20/3989/pdf (application/pdf)
https://www.mdpi.com/1660-4601/16/20/3989/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:16:y:2019:i:20:p:3989-:d:278131
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().