EconPapers    
Economics at your fingertips  
 

Interaction Among Influenza Viruses A/H1N1, A/H3N2, and B in Japan

Ayako Suzuki, Kenji Mizumoto, Andrei R. Akhmetzhanov and Hiroshi Nishiura
Additional contact information
Ayako Suzuki: Graduate School of Medicine, Hokkaido University, Kita 15-Jo Nishi 7-Chome, Kita-ku, Sapporo-shi, Hokkaido 060-8638, Japan
Kenji Mizumoto: Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University Yoshida-Nakaadachi-cho, Sakyo-ku, Kyoto 606-8306, Japan
Andrei R. Akhmetzhanov: Graduate School of Medicine, Hokkaido University, Kita 15-Jo Nishi 7-Chome, Kita-ku, Sapporo-shi, Hokkaido 060-8638, Japan
Hiroshi Nishiura: Graduate School of Medicine, Hokkaido University, Kita 15-Jo Nishi 7-Chome, Kita-ku, Sapporo-shi, Hokkaido 060-8638, Japan

IJERPH, 2019, vol. 16, issue 21, 1-10

Abstract: Seasonal influenza epidemics occur each winter season in temperate zones, involving up to 650,000 deaths each year globally. A published study demonstrated that the circulation of one influenza virus type during early influenza season in the United States interferes with the activity of other influenza virus types. However, this finding has yet to be validated in other settings. In the present work, we investigated the interaction among seasonal influenza viruses (A/H1N1, A/H3N2 and B) in Japan. Sentinel and virus surveillance data were used to estimate the type-specific incidence from 2010 to 2019, and statistical correlations among the type-specific incidence were investigated. We identified significant negative correlations between incidence of the dominant virus and the complementary incidence. When correlation was identified during the course of an epidemic, a linear regression model accurately predicted the epidemic size of a particular virus type before the epidemic peak. The peak of influenza type B took place later in the season than that of influenza A, although the epidemic peaks of influenza A/H1N1 and A/H3N2 nearly coincided. Given the interaction among different influenza viruses, underlying mechanisms including age and spatial dependence should be explored in future.

Keywords: influenza; viral interference; epidemics; statistical model; epidemiology (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1660-4601/16/21/4179/pdf (application/pdf)
https://www.mdpi.com/1660-4601/16/21/4179/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:16:y:2019:i:21:p:4179-:d:281428

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:16:y:2019:i:21:p:4179-:d:281428