Cluster Analysis of Residential Personal Exposure to ELF Magnetic Field in Children: Effect of Environmental Variables
Gabriella Tognola,
Emma Chiaramello,
Marta Bonato,
Isabelle Magne,
Martine Souques,
Serena Fiocchi,
Marta Parazzini and
Paolo Ravazzani
Additional contact information
Gabriella Tognola: CNR IEIIT—Consiglio Nazionale delle Ricerche, Istituto di Elettronica e di Ingegneria dell’Informazione e delle Telecomunicazioni, 20133 Milan, Italy
Emma Chiaramello: CNR IEIIT—Consiglio Nazionale delle Ricerche, Istituto di Elettronica e di Ingegneria dell’Informazione e delle Telecomunicazioni, 20133 Milan, Italy
Marta Bonato: CNR IEIIT—Consiglio Nazionale delle Ricerche, Istituto di Elettronica e di Ingegneria dell’Informazione e delle Telecomunicazioni, 20133 Milan, Italy
Isabelle Magne: EDF Electricité de France, 75017 Paris, France
Martine Souques: EDF Electricité de France, 75017 Paris, France
Serena Fiocchi: CNR IEIIT—Consiglio Nazionale delle Ricerche, Istituto di Elettronica e di Ingegneria dell’Informazione e delle Telecomunicazioni, 20133 Milan, Italy
Marta Parazzini: CNR IEIIT—Consiglio Nazionale delle Ricerche, Istituto di Elettronica e di Ingegneria dell’Informazione e delle Telecomunicazioni, 20133 Milan, Italy
Paolo Ravazzani: CNR IEIIT—Consiglio Nazionale delle Ricerche, Istituto di Elettronica e di Ingegneria dell’Informazione e delle Telecomunicazioni, 20133 Milan, Italy
IJERPH, 2019, vol. 16, issue 22, 1-14
Abstract:
Personal exposure to Extremely Low Frequency Magnetic Fields (ELF MF) in children is a very timely topic. We applied cluster analysis to 24 h indoor personal exposures of 884 children in France to identify possible common patterns of exposures. We investigated how electric networks near child home and other variables potentially affecting residential exposure, such as indoor sources of ELF MF, the age and type of the residence and family size, characterized the magnetic field exposure patterns. We identified three indoor personal exposure patterns: children living near overhead lines of high (63–150 kV), extra-high (225 kV) and ultra-high voltage (400 kV) were characterized by the highest exposures; children living near underground networks of low (400 V) and mid voltage (20 kV) and substations (20 kV/400 V) were characterized by mid exposures; children living far from electric networks had the lowest level of exposure. The harmonic component was not relevant in discriminating the exposure patterns, unlike the 50 Hz or broadband (40–800 Hz) component. Children using electric heating appliances, or living in big buildings or in larger families had generally a higher level of personal indoor exposure. Instead, the age of the residence was not relevant in differentiating the exposure patterns.
Keywords: children; ELF MF; magnetic field; residential exposure; cluster analysis; machine learning; electric heating; residence age; residence type; family size (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1660-4601/16/22/4363/pdf (application/pdf)
https://www.mdpi.com/1660-4601/16/22/4363/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:16:y:2019:i:22:p:4363-:d:284992
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().