EconPapers    
Economics at your fingertips  
 

Identification of Diabetic Patients through Clinical and Para-Clinical Features in Mexico: An Approach Using Deep Neural Networks

Vanessa Alcalá-Rmz, Laura A. Zanella-Calzada, Carlos E. Galván-Tejada, Alejandra García-Hernández, Miguel Cruz, Adan Valladares-Salgado, Jorge I. Galván-Tejada and Hamurabi Gamboa-Rosales
Additional contact information
Vanessa Alcalá-Rmz: Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Jardín Juarez 147, Centro, Zacatecas 98000, Zac, Mexico
Laura A. Zanella-Calzada: Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Jardín Juarez 147, Centro, Zacatecas 98000, Zac, Mexico
Carlos E. Galván-Tejada: Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Jardín Juarez 147, Centro, Zacatecas 98000, Zac, Mexico
Alejandra García-Hernández: Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Jardín Juarez 147, Centro, Zacatecas 98000, Zac, Mexico
Miguel Cruz: Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Del. Cuauhtémoc, Ciudad de México CP 06720, Mexico
Adan Valladares-Salgado: Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Del. Cuauhtémoc, Ciudad de México CP 06720, Mexico
Jorge I. Galván-Tejada: Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Jardín Juarez 147, Centro, Zacatecas 98000, Zac, Mexico
Hamurabi Gamboa-Rosales: Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Jardín Juarez 147, Centro, Zacatecas 98000, Zac, Mexico

IJERPH, 2019, vol. 16, issue 3, 1-12

Abstract: Diabetes is a chronic and noncommunicable but preventable disease that is affecting the Mexican population at worrying levels, being the first place in prevalence worldwide. Early diabetes detection has become important to prevent other health conditions that involve low organ yield until the patient death. Based on this problem, this work proposes the architecture of an Artificial Neural Network (ANN) for the automated classification of healthy patients from diabetics patients. The analysis was performed used a set of 19 para-clinical features to determine the health status of the patients. The developed model was evaluated through a statistical analysis based on the calculation of the loss function, accuracy, area under the curve (AUC) and receiving operating characteristics (ROC) curve. The results obtained present statistically significant values, with accuracy of 0.94 and AUC values of 0.98. Based on these results, it is possible to conclude that the ANN implemented in this work can classify patients with presence of diabetes from controls with significant accuracy, presenting preliminary results for the development of a diagnostic tool that can be supportive for health specialists.

Keywords: type 2 diabetes; Artificial Neural Network; net reclassification improvement; computer-aided diagnosis; statistical analysis (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1660-4601/16/3/381/pdf (application/pdf)
https://www.mdpi.com/1660-4601/16/3/381/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:16:y:2019:i:3:p:381-:d:201763

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:16:y:2019:i:3:p:381-:d:201763