EconPapers    
Economics at your fingertips  
 

Use of Machine Learning in the Analysis of Indoor ELF MF Exposure in Children

Gabriella Tognola, Marta Bonato, Emma Chiaramello, Serena Fiocchi, Isabelle Magne, Martine Souques, Marta Parazzini and Paolo Ravazzani
Additional contact information
Gabriella Tognola: CNR IEIIT—Consiglio Nazionale delle Ricerche, Istituto di Elettronica e di Ingegneria dell’Informazione e delle Telecomunicazioni, 20133 Milan, Italy
Marta Bonato: CNR IEIIT—Consiglio Nazionale delle Ricerche, Istituto di Elettronica e di Ingegneria dell’Informazione e delle Telecomunicazioni, 20133 Milan, Italy
Emma Chiaramello: CNR IEIIT—Consiglio Nazionale delle Ricerche, Istituto di Elettronica e di Ingegneria dell’Informazione e delle Telecomunicazioni, 20133 Milan, Italy
Serena Fiocchi: CNR IEIIT—Consiglio Nazionale delle Ricerche, Istituto di Elettronica e di Ingegneria dell’Informazione e delle Telecomunicazioni, 20133 Milan, Italy
Isabelle Magne: EDF Electricite de France, 92300 Levallois-Perret, France
Martine Souques: EDF Electricite de France, 92300 Levallois-Perret, France
Marta Parazzini: CNR IEIIT—Consiglio Nazionale delle Ricerche, Istituto di Elettronica e di Ingegneria dell’Informazione e delle Telecomunicazioni, 20133 Milan, Italy
Paolo Ravazzani: CNR IEIIT—Consiglio Nazionale delle Ricerche, Istituto di Elettronica e di Ingegneria dell’Informazione e delle Telecomunicazioni, 20133 Milan, Italy

IJERPH, 2019, vol. 16, issue 7, 1-14

Abstract: Characterization of children exposure to extremely low frequency (ELF) magnetic fields is an important issue because of the possible correlation of leukemia onset with ELF exposure. Cluster analysis—a Machine Learning approach—was applied on personal exposure measurements from 977 children in France to characterize real-life ELF exposure scenarios. Electric networks near the child’s home or school were considered as environmental factors characterizing the exposure scenarios. The following clusters were identified: children with the highest exposure living 120–200 m from 225 kV/400 kV overhead lines; children with mid-to-high exposure living 70–100 m from 63 kV/150 kV overhead lines; children with mid-to-low exposure living 40 m from 400 V/20 kV substations and underground networks; children with the lowest exposure and the lowest number of electric networks in the vicinity. 63–225 kV underground networks within 20 m and 400 V/20 kV overhead lines within 40 m played a marginal role in differentiating exposure clusters. Cluster analysis is a viable approach to discovering variables best characterizing the exposure scenarios and thus it might be potentially useful to better tailor epidemiological studies. The present study did not assess the impact of indoor sources of exposure, which should be addressed in a further study.

Keywords: children; ELF MF; magnetic field; indoor exposure; cluster analysis; Machine Learning (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1660-4601/16/7/1230/pdf (application/pdf)
https://www.mdpi.com/1660-4601/16/7/1230/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:16:y:2019:i:7:p:1230-:d:220465

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:16:y:2019:i:7:p:1230-:d:220465