EconPapers    
Economics at your fingertips  
 

The Analysis of the Urban Sprawl Measurement System of the Yangtze River Economic Belt, Based on Deep Learning and Neural Network Algorithm

Huafang Huang, Xiaomao Wu and Xianfu Cheng
Additional contact information
Huafang Huang: School of Geography and Tourism, Anhui Normal University, Wuhu 241002, China
Xiaomao Wu: Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, South Yorkshire S10 2TN, UK
Xianfu Cheng: School of Geography and Tourism, Anhui Normal University, Wuhu 241002, China

IJERPH, 2020, vol. 17, issue 12, 1-13

Abstract: In the context of rapid urbanization, the spread of cities in the Yangtze River Economic Belt is intensifying, which has an impact on the green and sustainable development of these cities. It is necessary to establish an accurate urban sprawl measurement system. First, the regulation theory of urban sprawl is explained. According to the actual development situation of cities in the Yangtze River Economic Belt, smart growth theory is selected as the basic regulation method of urban sprawl. Second, the back propagation neural network (BPNN) algorithm under deep supervised learning is applied to construct a smart evaluation model of land use growth. Finally, based on the actual development of cities in the Yangtze River Economic Belt, the quantitative growth measurement method is selected to construct a measurement system of urban sprawl in the Yangtze River Economic Belt, and the empirical analysis is carried out. The training results show that the proposed BPNN smart growth evaluation model, based on deep supervised learning, has good evaluation accuracy, and the error is within the preset range. The analysis of the quantitative growth-based measurement system in the increase of urban construction land shows that the increase in urban construction land area of the Yangtze River Economic Belt from 2014 to 2019 was 78.67 km 2 . Meanwhile, the increases in urban construction land area in different years are different. The empirical results show that the population composition of the Yangtze River Economic Belt and the urban construction area between 2005 and 2019 show a trend of increasing annually; at the same time, urban sprawl development shows a staged characteristic. It is of great significance to apply deep learning fusion neural network algorithm in the construction of the urban sprawl measurement system, which provides a quantitative basis for the in-depth analysis and discussion of urban sprawl.

Keywords: deep learning; back propagation neural network algorithm; Yangtze River Economic Belt; smart growth evaluation of land use; quantitative growth measurement; urban sprawl measurement system; empirical analysis (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1660-4601/17/12/4194/pdf (application/pdf)
https://www.mdpi.com/1660-4601/17/12/4194/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:17:y:2020:i:12:p:4194-:d:370581

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:17:y:2020:i:12:p:4194-:d:370581