Application of Wastewater Reuse with Photocatalyst Prepared by Sol-Gel Method and Its Kinetics on the Decomposition of Low Molecular Weight Pollutants
Jinwook Chung,
Seungjoon Chung,
Gyuyoung Lee and
Yong-Woo Lee
Additional contact information
Jinwook Chung: R&D Center, Samsung Engineering Co. Ltd., 41 Maeyoung-Ro, 269 Beon-Gil, Youngtong-Gu, Suwon, Gyeonggi-Do 16523, Korea
Seungjoon Chung: R&D Center, Samsung Engineering Co. Ltd., 41 Maeyoung-Ro, 269 Beon-Gil, Youngtong-Gu, Suwon, Gyeonggi-Do 16523, Korea
Gyuyoung Lee: R&D Center, Samsung Engineering Co. Ltd., 41 Maeyoung-Ro, 269 Beon-Gil, Youngtong-Gu, Suwon, Gyeonggi-Do 16523, Korea
Yong-Woo Lee: Department of Chemical and Molecular Engineering, Hanyang University, 55 Hanyangdaehakro, Sangrok-Gu, Ansan, Gyeonggi-Do 15588, Korea
IJERPH, 2020, vol. 17, issue 12, 1-13
Abstract:
The development of immobilized photocatalyst as a strategy for problematic electronics wastewater reuse is described in this study. The strategy was to perform separate rinsing, mostly consisting of low molecular weight compounds, and to decompose them with a simple process, based on the advanced oxidation process (AOP). Extensive studies were performed on the preparation conditions of immobilized photocatalysts by sol-gel method under various amount of precursor and support, water to precursor ratio, pH, aging time, and calcination conditions. The optimized preparation conditions were chosen by measuring removal efficiencies of isopropyl alcohol as a representative target compound with supportive SEM and XRD analyses. Removal efficiencies with photocatalyst and UV irradiation in synthetic wastewater simulating electronics wastewater were evaluated over time. Removal efficiencies of alcohol, acetone, ethanol, and acetaldehyde reached 97.2%, 71.2%, 99.0%, and 99.0%, respectively, in 2 h. Reaction constants of each compound were determined by fitting experimental data to the first order kinetic equation and the trial and error method with consecutive reaction pathway. As analysis results of reaction constants, UV with prepared photocatalyst was found to be effective and the decomposition of acetone was found to be the rate-determining step. The immobilized photocatalyst developed in this study would be useful for application of wastewater reuse with high removal efficiencies, mild preparation conditions, and mechanical stability.
Keywords: electronic wastewater; low-molecular-weight (LMW) compounds; photocatalytic media; sol-gel method (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1660-4601/17/12/4203/pdf (application/pdf)
https://www.mdpi.com/1660-4601/17/12/4203/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:17:y:2020:i:12:p:4203-:d:370711
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().