Comparison of Random Forest Model and Frequency Ratio Model for Landslide Susceptibility Mapping (LSM) in Yunyang County (Chongqing, China)
Yue Wang,
Deliang Sun,
Haijia Wen,
Hong Zhang and
Fengtai Zhang
Additional contact information
Yue Wang: The Key Laboratory of GIS Application Research, Chongqing Normal University, Chongqing 401331, China
Deliang Sun: The Key Laboratory of GIS Application Research, Chongqing Normal University, Chongqing 401331, China
Haijia Wen: Key Laboratory of New Technology for Construction of Cities in Mountain Area, Ministry of Education, Chongqing 400045, China
Hong Zhang: The Key Laboratory of GIS Application Research, Chongqing Normal University, Chongqing 401331, China
Fengtai Zhang: School of Management, Chongqing University of Technology, Chongqing 400054, China
IJERPH, 2020, vol. 17, issue 12, 1-39
Abstract:
To compare the random forest (RF) model and the frequency ratio (FR) model for landslide susceptibility mapping (LSM), this research selected Yunyang Country as the study area for its frequent natural disasters; especially landslides. A landslide inventory was built by historical records; satellite images; and extensive field surveys. Subsequently; a geospatial database was established based on 987 historical landslides in the study area. Then; all the landslides were randomly divided into two datasets: 70% of them were used as the training dataset and 30% as the test dataset. Furthermore; under five primary conditioning factors (i.e., topography factors; geological factors; environmental factors; human engineering activities; and triggering factors), 22 secondary conditioning factors were selected to form an evaluation factor library for analyzing the landslide susceptibility. On this basis; the RF model training and the FR model mathematical analysis were performed; and the established models were used for the landslide susceptibility simulation in the entire area of Yunyang County. Next; based on the analysis results; the susceptibility maps were divided into five classes: very low; low; medium; high; and very high. In addition; the importance of conditioning factors was ranked and the influence of landslides was explored by using the RF model. The area under the curve (AUC) value of receiver operating characteristic (ROC) curve; precision; accuracy; and recall ratio were used to analyze the predictive ability of the above two LSM models. The results indicated a difference in the performances between the two models. The RF model (AUC = 0.988) performed better than the FR model (AUC = 0.716). Moreover; compared with the FR model; the RF model showed a higher coincidence degree between the areas in the high and the very low susceptibility classes; on the one hand; and the geographical spatial distribution of historical landslides; on the other hand. Therefore; it was concluded that the RF model was more suitable for landslide susceptibility evaluation in Yunyang County; because of its significant model performance; reliability; and stability. The outcome also provided a theoretical basis for application of machine learning techniques (e.g., RF) in landslide prevention; mitigation; and urban planning; so as to deliver an adequate response to the increasing demand for effective and low-cost tools in landslide susceptibility assessments.
Keywords: Yunyang County; landslide susceptibility; random forest model; frequency ratio model (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
https://www.mdpi.com/1660-4601/17/12/4206/pdf (application/pdf)
https://www.mdpi.com/1660-4601/17/12/4206/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:17:y:2020:i:12:p:4206-:d:370785
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().