Maternal but Not Paternal High-Fat Diet (HFD) Exposure at Conception Predisposes for ‘Diabesity’ in Offspring Generations
Karen Schellong,
Kerstin Melchior,
Thomas Ziska,
Rebecca C. Rancourt,
Wolfgang Henrich and
Andreas Plagemann
Additional contact information
Karen Schellong: Division of ‘Experimental Obstetrics’, Clinic of Obstetrics, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow-Klinikum, 13353 Berlin, Germany
Kerstin Melchior: Division of ‘Experimental Obstetrics’, Clinic of Obstetrics, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow-Klinikum, 13353 Berlin, Germany
Thomas Ziska: Division of ‘Experimental Obstetrics’, Clinic of Obstetrics, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow-Klinikum, 13353 Berlin, Germany
Rebecca C. Rancourt: Division of ‘Experimental Obstetrics’, Clinic of Obstetrics, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow-Klinikum, 13353 Berlin, Germany
Wolfgang Henrich: Clinic of Obstetrics, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow-Klinikum, 13353 Berlin, Germany
Andreas Plagemann: Division of ‘Experimental Obstetrics’, Clinic of Obstetrics, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow-Klinikum, 13353 Berlin, Germany
IJERPH, 2020, vol. 17, issue 12, 1-14
Abstract:
While environmental epigenetics mainly focuses on xenobiotic endocrine disruptors, dietary composition might be one of the most important environmental exposures for epigenetic modifications, perhaps even for offspring generations. We performed a large-scale rat study on key phenotypic consequences from parental (F0) high-caloric, high-fat diet (HFD) food intake, precisely and specifically at mating/conception, focusing on ‘diabesity’ risk in first- (F1) and second- (F2) generation offspring of both sexes. F0 rats (maternal or paternal, respectively) received HFD overfeeding, starting six weeks prior to mating with normally fed control rats. The maternal side F1 offspring of both sexes developed a ‘diabesity’ predisposition throughout life (obesity, hyperleptinemia, hyperglycemia, insulin resistance), while no respective alterations occurred in the paternal side F1 offspring, neither in males nor in females. Mating the maternal side F1 females with control males under standard feeding conditions led, again, to a ‘diabesity’ predisposition in the F2 generation, which, however, was less pronounced than in the F1 generation. Our observations speak in favor of the critical impact of maternal but not paternal metabolism around the time frame of reproduction for offspring metabolic health over generations. Such fundamental phenotypic observations should be carefully considered in front of detailed molecular epigenetic approaches on eventual mechanisms.
Keywords: developmental/perinatal programming; maternal and paternal overnutrition; high-fat diet; intergenerational effects; obesity; diabetes (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1660-4601/17/12/4229/pdf (application/pdf)
https://www.mdpi.com/1660-4601/17/12/4229/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:17:y:2020:i:12:p:4229-:d:371093
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().