EconPapers    
Economics at your fingertips  
 

Modeling Spatiotemporal Pattern of Depressive Symptoms Caused by COVID-19 Using Social Media Data Mining

Diya Li, Harshita Chaudhary and Zhe Zhang
Additional contact information
Diya Li: Department of Geography, Texas A&M University, 3147 TAMU, College Station, TX 77843, USA
Harshita Chaudhary: Department of Computer Science and Engineering, Texas A&M University, 3112 TAMU, College Station, TX 77843, USA
Zhe Zhang: Department of Geography, Texas A&M University, 3147 TAMU, College Station, TX 77843, USA

IJERPH, 2020, vol. 17, issue 14, 1-23

Abstract: By 29 May 2020, the coronavirus disease (COVID-19) caused by SARS-CoV-2 had spread to 188 countries, infecting more than 5.9 million people, and causing 361,249 deaths. Governments issued travel restrictions, gatherings of institutions were cancelled, and citizens were ordered to socially distance themselves in an effort to limit the spread of the virus. Fear of being infected by the virus and panic over job losses and missed education opportunities have increased people’s stress levels. Psychological studies using traditional surveys are time-consuming and contain cognitive and sampling biases, and therefore cannot be used to build large datasets for a real-time depression analysis. In this article, we propose a CorExQ9 algorithm that integrates a Correlation Explanation (CorEx) learning algorithm and clinical Patient Health Questionnaire (PHQ) lexicon to detect COVID-19 related stress symptoms at a spatiotemporal scale in the United States. The proposed algorithm overcomes the common limitations of traditional topic detection models and minimizes the ambiguity that is caused by human interventions in social media data mining. The results show a strong correlation between stress symptoms and the number of increased COVID-19 cases for major U.S. cities such as Chicago, San Francisco, Seattle, New York, and Miami. The results also show that people’s risk perception is sensitive to the release of COVID-19 related public news and media messages. Between January and March, fear of infection and unpredictability of the virus caused widespread panic and people began stockpiling supplies, but later in April, concerns shifted as financial worries in western and eastern coastal areas of the U.S. left people uncertain of the long-term effects of COVID-19 on their lives.

Keywords: COVID-19 pandemic; social media data mining; mental health; Basilisk algorithm; Patient Health Questionnaire (PHQ); Correlation Explanation (CorEx) (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://www.mdpi.com/1660-4601/17/14/4988/pdf (application/pdf)
https://www.mdpi.com/1660-4601/17/14/4988/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:17:y:2020:i:14:p:4988-:d:383029

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:17:y:2020:i:14:p:4988-:d:383029