An Acceleration Based Fusion of Multiple Spatiotemporal Networks for Gait Phase Detection
Tao Zhen,
Lei Yan and
Jian-lei Kong
Additional contact information
Tao Zhen: College of Engineering, Beijing Forestry University, Beijing 100083, China
Lei Yan: College of Engineering, Beijing Forestry University, Beijing 100083, China
Jian-lei Kong: Artificial Intelligence Academy, Beijing Technology and Business University, Beijing 100048, China
IJERPH, 2020, vol. 17, issue 16, 1-17
Abstract:
Human-gait-phase-recognition is an important technology in the field of exoskeleton robot control and medical rehabilitation. Inertial sensors with accelerometers and gyroscopes are easy to wear, inexpensive and have great potential for analyzing gait dynamics. However, current deep-learning methods extract spatial and temporal features in isolation—while ignoring the inherent correlation in high-dimensional spaces—which limits the accuracy of a single model. This paper proposes an effective hybrid deep-learning framework based on the fusion of multiple spatiotemporal networks (FMS-Net), which is used to detect asynchronous phases from IMU signals. More specifically, it first uses a gait-information acquisition system to collect IMU sensor data fixed on the lower leg. Through data preprocessing, the framework constructs a spatial feature extractor with CNN module and a temporal feature extractor, combined with LSTM module. Finally, a skip-connection structure and the two-layer fully connected layer fusion module are used to achieve the final gait recognition. Experimental results show that this method has better identification accuracy than other comparative methods with the macro-F1 reaching 96.7%.
Keywords: gait-phase-recognition; FMS-Net; spatiotemporal networks; IMU signals; skip-connection structure (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1660-4601/17/16/5633/pdf (application/pdf)
https://www.mdpi.com/1660-4601/17/16/5633/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:17:y:2020:i:16:p:5633-:d:394623
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().