Minimum Sizes of Respiratory Particles Carrying SARS-CoV-2 and the Possibility of Aerosol Generation
Byung Uk Lee
Additional contact information
Byung Uk Lee: Aerosol and Bioengineering Laboratory, College of Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
IJERPH, 2020, vol. 17, issue 19, 1-8
Abstract:
This study calculates and elucidates the minimum size of respiratory particles that are potential carriers of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); furthermore, it evaluates the aerosol generation potential of SARS-CoV-2. The calculations are based on experimental results and theoretical models. In the case of maximum viral-loading derived from experimental data of COVID-19 patients, 8.97 × 10 ?5 % of a respiratory fluid particle from a COVID-19 patient is occupied by SARS-CoV-2. Hence, the minimum size of a respiratory particle that can contain SARS-CoV-2 is calculated to be approximately 9.3 ?m. The minimum size of the particles can decrease due to the evaporation of water on the particle surfaces. There are limitations to this analysis: (a) assumption that the viruses are homogeneously distributed in respiratory fluid particles and (b) considering a gene copy as a single virion in unit conversions. However, the study shows that high viral loads can decrease the minimum size of respiratory particles containing SARS-CoV-2, thereby increasing the probability of aerosol generation of the viruses. The aerosol generation theory created in this study for COVID-19 has the potential to be applied to other contagious diseases that are caused by respiratory infectious microorganisms.
Keywords: COVID-19; Middle East respiratory syndrome coronavirus; bioaerosol; aerosol; aerosol transmission; droplet; severe acute respiratory syndrome coronavirus 2; virus transmission; airborne transmission; SARS-CoV-2 bioaerosol; air infection; viral infection; MERS; nosocomial infection; respiratory particle; SARS; minimum size; aerosol suspension time; contagious disease (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1660-4601/17/19/6960/pdf (application/pdf)
https://www.mdpi.com/1660-4601/17/19/6960/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:17:y:2020:i:19:p:6960-:d:417938
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().