EconPapers    
Economics at your fingertips  
 

Exploring the Injury Severity Risk Factors in Fatal Crashes with Neural Network

Arshad Jamal and Waleed Umer
Additional contact information
Arshad Jamal: Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals, KFUPM BOX 5055, Dhahran 31261, Saudi Arabia
Waleed Umer: Department of Construction Engineering and Management, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia

IJERPH, 2020, vol. 17, issue 20, 1-22

Abstract: A better understanding of circumstances contributing to the severity outcome of traffic crashes is an important goal of road safety studies. An in-depth crash injury severity analysis is vital for the proactive implementation of appropriate mitigation strategies. This study proposes an improved feed-forward neural network (FFNN) model for predicting injury severity associated with individual crashes using three years (2017–2019) of crash data collected along 15 rural highways in the Kingdom of Saudi Arabia (KSA). A total of 12,566 crashes were recorded during the study period with a binary injury severity outcome (fatal or non-fatal injury) for the variable to be predicted. FFNN architecture with back-propagation (BP) as a training algorithm, logistic as activation function, and six number of hidden neurons in the hidden layer yielded the best model performance. Results of model prediction for the test data were analyzed using different evaluation metrics such as overall accuracy, sensitivity, and specificity. Prediction results showed the adequacy and robust performance of the proposed method. A detailed sensitivity analysis of the optimized NN was also performed to show the impact and relative influence of different predictor variables on resulting crash injury severity. The sensitivity analysis results indicated that factors such as traffic volume, average travel speeds, weather conditions, on-site damage conditions, road and vehicle type, and involvement of pedestrians are the most sensitive variables. The methods applied in this study could be used in big data analysis of crash data, which can serve as a rapid-useful tool for policymakers to improve highway safety.

Keywords: road safety; crash injury severity prediction; machine learning; neural networks; sensitivity analysis; Saudi Arabia (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
https://www.mdpi.com/1660-4601/17/20/7466/pdf (application/pdf)
https://www.mdpi.com/1660-4601/17/20/7466/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:17:y:2020:i:20:p:7466-:d:427862

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:17:y:2020:i:20:p:7466-:d:427862