Optimized Pretreatment of Non-Thermal Plasma for Advanced Sewage Oxidation
Hee-Jun Kim,
Chan-Hee Won and
Hyun-Woo Kim
Additional contact information
Hee-Jun Kim: Soil Environment Research Center, Department of Environmental Engineering, Division of Civil, Environmental, Mineral Resource and Energy Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Korea
Chan-Hee Won: Soil Environment Research Center, Department of Environmental Engineering, Division of Civil, Environmental, Mineral Resource and Energy Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Korea
Hyun-Woo Kim: Soil Environment Research Center, Department of Environmental Engineering, Division of Civil, Environmental, Mineral Resource and Energy Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Korea
IJERPH, 2020, vol. 17, issue 20, 1-13
Abstract:
This study investigates how the non-thermal plasma (NTP) process leads to advanced oxidation of sewage using response surface methodology. For environmentally viable and efficient operation of the NTP process, temperature and contact time were selected as two important independent variables. Their impacts on the performance were tested following an experimental design to figure out optimal operating conditions. Based on obtained treatment efficiency, statistically optimized conditions were derived by using an approach adapting the central composite design. Results show that coupling 40 °C of temperature and 4 h of contact time demonstrate optimal performance for total chemical oxygen demand (TCOD, 59%) and total suspended solids (85%), respectively. This implies that NTP may present efficient particulate destruction leading to organic solids dissolution. Statistical analysis reveals that the contact time shows more significant dependency than the temperature on the advanced oxidation of TCOD, possibly due to dissolved organic material. For total nitrogen removal, on the contrary, the optimal efficiency was strongly related to the higher temperature (~68 °C). This work provides an inroad to considering how NTP can optimally contribute to better oxidation of multiple pollutants.
Keywords: non-thermal plasma; advanced oxidation process; statistical optimization; temperature; contact time; pollutant removal (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1660-4601/17/20/7694/pdf (application/pdf)
https://www.mdpi.com/1660-4601/17/20/7694/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:17:y:2020:i:20:p:7694-:d:432571
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().