Facing a Second Wave from a Regional View: Spatial Patterns of COVID-19 as a Key Determinant for Public Health and Geoprevention Plans
Olga De Cos,
Valentín Castillo and
David Cantarero
Additional contact information
Olga De Cos: Department of Geography, Urbanism and Land Planning, University of Cantabria, 39005 Santander, Spain
Valentín Castillo: Department of Geography, Urbanism and Land Planning, University of Cantabria, 39005 Santander, Spain
David Cantarero: Research Group of Health Economics and Health Services Management–Research Institute Marqués de Valdecilla (IDIVAL), 39011 Santander, Spain
IJERPH, 2020, vol. 17, issue 22, 1-18
Abstract:
Several studies on spatial patterns of COVID-19 show huge differences depending on the country or region under study, although there is some agreement that socioeconomic factors affect these phenomena. The aim of this paper is to increase the knowledge of the socio-spatial behavior of coronavirus and implementing a geospatial methodology and digital system called SITAR (Fast Action Territorial Information System, by its Spanish acronym). We analyze as a study case a region of Spain called Cantabria, geocoding a daily series of microdata coronavirus records provided by the health authorities (Government of Cantabria—Spain) with the permission of Medicines Ethics Committee from Cantabria (CEIm, June 2020). Geocoding allows us to provide a new point layer based on the microdata table that includes cases with a positive result in a COVID-19 test. Regarding general methodology, our research is based on Geographical Information Technologies using Environmental Systems Research Institute (ESRI) Technologies. This tool is a global reference for spatial COVID-19 research, probably due to the world-renowned COVID-19 dashboard implemented by the Johns Hopkins University team. In our analysis, we found that the spatial distribution of COVID-19 in urban locations presents a not random distribution with clustered patterns and density matters in the spread of the COVID-19 pandemic. As a result, large metropolitan areas or districts with a higher number of persons tightly linked together through economic, social, and commuting relationships are the most vulnerable to pandemic outbreaks, particularly in our case study. Furthermore, public health and geoprevention plans should avoid the idea of economic or territorial stigmatizations. We hold the idea that SITAR in particular and Geographic Information Technologies in general contribute to strategic spatial information and relevant results with a necessary multi-scalar perspective to control the pandemic.
Keywords: spatial patterns; COVID-19; microdata; geographic information technologies; ArcGIS; public health; geoprevention (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1660-4601/17/22/8468/pdf (application/pdf)
https://www.mdpi.com/1660-4601/17/22/8468/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:17:y:2020:i:22:p:8468-:d:445587
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().