EconPapers    
Economics at your fingertips  
 

Cholera Risk: A Machine Learning Approach Applied to Essential Climate Variables

Amy Marie Campbell, Marie-Fanny Racault, Stephen Goult and Angus Laurenson
Additional contact information
Amy Marie Campbell: European Space Agency, Climate Office, ECSAT, Harwell OX11 0FD, UK
Marie-Fanny Racault: Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK
Stephen Goult: Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK
Angus Laurenson: Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK

IJERPH, 2020, vol. 17, issue 24, 1-24

Abstract: Oceanic and coastal ecosystems have undergone complex environmental changes in recent years, amid a context of climate change. These changes are also reflected in the dynamics of water-borne diseases as some of the causative agents of these illnesses are ubiquitous in the aquatic environment and their survival rates are impacted by changes in climatic conditions. Previous studies have established strong relationships between essential climate variables and the coastal distribution and seasonal dynamics of the bacteria Vibrio cholerae , pathogenic types of which are responsible for human cholera disease. In this study we provide a novel exploration of the potential of a machine learning approach to forecast environmental cholera risk in coastal India, home to more than 200 million inhabitants, utilising atmospheric, terrestrial and oceanic satellite-derived essential climate variables. A Random Forest classifier model is developed, trained and tested on a cholera outbreak dataset over the period 2010–2018 for districts along coastal India. The random forest classifier model has an Accuracy of 0.99, an F1 Score of 0.942 and a Sensitivity score of 0.895, meaning that 89.5% of outbreaks are correctly identified. Spatio-temporal patterns emerged in terms of the model’s performance based on seasons and coastal locations. Further analysis of the specific contribution of each Essential Climate Variable to the model outputs shows that chlorophyll-a concentration, sea surface salinity and land surface temperature are the strongest predictors of the cholera outbreaks in the dataset used. The study reveals promising potential of the use of random forest classifiers and remotely-sensed essential climate variables for the development of environmental cholera-risk applications. Further exploration of the present random forest model and associated essential climate variables is encouraged on cholera surveillance datasets in other coastal areas affected by the disease to determine the model’s transferability potential and applicative value for cholera forecasting systems.

Keywords: cholera; coastal environment; climate; remote sensing; essential climate variables; machine learning; AI; random forest (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1660-4601/17/24/9378/pdf (application/pdf)
https://www.mdpi.com/1660-4601/17/24/9378/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:17:y:2020:i:24:p:9378-:d:462296

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:17:y:2020:i:24:p:9378-:d:462296