EconPapers    
Economics at your fingertips  
 

Analysis of Relevant Features from Photoplethysmographic Signals for Atrial Fibrillation Classification

César A. Millán, Nathalia A. Girón and Diego M. Lopez
Additional contact information
César A. Millán: Telematics Engineering Research Group, Telematics Department, Universidad Del Cauca (Unicauca), Popayán 190002, Colombia
Nathalia A. Girón: Telematics Engineering Research Group, Telematics Department, Universidad Del Cauca (Unicauca), Popayán 190002, Colombia
Diego M. Lopez: Telematics Engineering Research Group, Telematics Department, Universidad Del Cauca (Unicauca), Popayán 190002, Colombia

IJERPH, 2020, vol. 17, issue 2, 1-15

Abstract: Atrial Fibrillation (AF) is the most common cardiac arrhythmia found in clinical practice. It affects an estimated 33.5 million people, representing approximately 0.5% of the world’s population. Electrocardiogram (ECG) is the main diagnostic criterion for AF. Recently, photoplethysmography (PPG) has emerged as a simple and portable alternative for AF detection. However, it is not completely clear which are the most important features of the PPG signal to perform this process. The objective of this paper is to determine which are the most relevant features for PPG signal analysis in the detection of AF. This study is divided into two stages: (a) a systematic review carried out following the Preferred Reporting Items for a Systematic Review and Meta-analysis of Diagnostic Test Accuracy Studies (PRISMA-DTA) statement in six databases, in order to identify the features of the PPG signal reported in the literature for the detection of AF, and (b) an experimental evaluation of them, using machine learning, in order to determine which have the greatest influence on the process of detecting AF. Forty-four features were found when analyzing the signal in the time, frequency, or time–frequency domains. From those 44 features, 27 were implemented, and through machine learning, it was found that only 11 are relevant in the detection process. An algorithm was developed for the detection of AF based on these 11 features, which obtained an optimal performance in terms of sensitivity (98.43%), specificity (99.52%), and accuracy (98.97%).

Keywords: atrial fibrillation; AF; photoplethysmography; PPG; feature selection (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1660-4601/17/2/498/pdf (application/pdf)
https://www.mdpi.com/1660-4601/17/2/498/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:17:y:2020:i:2:p:498-:d:308199

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:17:y:2020:i:2:p:498-:d:308199