Sugarcane Bagasse as an Efficient Biosorbent for Methylene Blue Removal: Kinetics, Isotherms and Thermodynamics
Thaisa Caroline Andrade Siqueira,
Isabella Zanette da Silva,
Andressa Jenifer Rubio,
Rosângela Bergamasco,
Francielli Gasparotto,
Edneia Aparecida de Souza Paccola and
Natália Ueda Yamaguchi
Additional contact information
Thaisa Caroline Andrade Siqueira: Centro Universitário de Maringá—Unicesumar, Maringá 87050-900, Brazil
Isabella Zanette da Silva: Centro Universitário de Maringá—Unicesumar, Maringá 87050-900, Brazil
Andressa Jenifer Rubio: Programa de Pós-Graduação em Tecnologias Limpas—Unicesumar, Instituto Cesumar de Ciência, Tecnologia e Inovação—ICETI, Maringá 87050-900, Brazil
Rosângela Bergamasco: Programa de Pós-Graduação em Engenharia Química, Departamento de Engenharia Química, Universidade Estadual de Maringá, Maringá 87020-900, Brazil
Francielli Gasparotto: Programa de Pós-Graduação em Tecnologias Limpas—Unicesumar, Instituto Cesumar de Ciência, Tecnologia e Inovação—ICETI, Maringá 87050-900, Brazil
Edneia Aparecida de Souza Paccola: Programa de Pós-Graduação em Tecnologias Limpas—Unicesumar, Instituto Cesumar de Ciência, Tecnologia e Inovação—ICETI, Maringá 87050-900, Brazil
Natália Ueda Yamaguchi: Programa de Pós-Graduação em Tecnologias Limpas—Unicesumar, Instituto Cesumar de Ciência, Tecnologia e Inovação—ICETI, Maringá 87050-900, Brazil
IJERPH, 2020, vol. 17, issue 2, 1-13
Abstract:
Adsorption in biomass has proven to be a cost-effective option for treatment of wastewater containing dyes and other pollutants, as it is a simple and low cost technique and does not require high initial investments. The present work aimed to study the adsorption of methylene blue dye (MB) using sugarcane bagasse (SCB). The biomass was characterized by scanning electron microscopy (SEM). Adsorption studies were conducted batchwise. Kinetics, adsorption isotherms, and thermodynamics were studied. The results showed that SCB presented a maximum adsorption capacity of 9.41 mg g −1 at 45 °C after 24 h of contact time. Adsorption kinetics data better fitted the pseudo-second order model, indicating a chemical process was involved. The Sips’s three-parameter isotherm model was better for adjusting the data obtained for the adsorption isotherms, indicating a heterogeneous adsorption process. The process showed to be endothermic, spontaneous, and feasible. Therefore, it was concluded that SCB presented as a potential biosorbent material for the treatment of MB-contaminated waters.
Keywords: adsorption; methylene blue; sugarcane bagasse; sustainable; wastewater (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1660-4601/17/2/526/pdf (application/pdf)
https://www.mdpi.com/1660-4601/17/2/526/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:17:y:2020:i:2:p:526-:d:308662
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().