EconPapers    
Economics at your fingertips  
 

Distribution of Antibiotic Resistance Genes in Three Different Natural Water Bodies-A Lake, River and Sea

Sicong Su, Chenyu Li, Jiping Yang, Qunying Xu, Zhigang Qiu, Bin Xue, Shang Wang, Chen Zhao, Zhonghai Xiao, Jingfeng Wang and Zhiqiang Shen
Additional contact information
Sicong Su: Department of Environment and Health, Tianjin Institude of Environmental and Operational Medicine, Tianjin 300050, China
Chenyu Li: Department of Environment and Health, Tianjin Institude of Environmental and Operational Medicine, Tianjin 300050, China
Jiping Yang: Heping District Center for Disease Control and Prevention, Tianjin 300020, China
Qunying Xu: School of Public Health, Nanchang University, Nanchang 330006, Jiangxi, China
Zhigang Qiu: Department of Environment and Health, Tianjin Institude of Environmental and Operational Medicine, Tianjin 300050, China
Bin Xue: Department of Environment and Health, Tianjin Institude of Environmental and Operational Medicine, Tianjin 300050, China
Shang Wang: Department of Environment and Health, Tianjin Institude of Environmental and Operational Medicine, Tianjin 300050, China
Chen Zhao: Department of Environment and Health, Tianjin Institude of Environmental and Operational Medicine, Tianjin 300050, China
Zhonghai Xiao: Department of Environment and Health, Tianjin Institude of Environmental and Operational Medicine, Tianjin 300050, China
Jingfeng Wang: Department of Environment and Health, Tianjin Institude of Environmental and Operational Medicine, Tianjin 300050, China
Zhiqiang Shen: Department of Environment and Health, Tianjin Institude of Environmental and Operational Medicine, Tianjin 300050, China

IJERPH, 2020, vol. 17, issue 2, 1-12

Abstract: Currently, due to abuse in the use of human antibiotics and the weak regulatory control that the authorities have over sewage discharge and manure management, antibiotic resistance genes (ARGs) have become a new type of environmental pollutant. Three different natural water bodies (Poyang Lake, Haihe River and Qingdao No.1 Bathing Beach seawater) were sampled during the same periods to conduct a longitudinal comparison of distribution. The distribution and expression of 11 ARGs in 20 species were studied, and the correlations between the expression and the distribution of time and space of the ARGs in different water bodies were also analyzed. With the exception of ermA , blaNDM-1 and vanA , which were not detected in seawater, the other ARGs could be detected in all three water bodies. Tetracycline resistance genes ( tetC , tetM and tetQ ) in the seawater and Haihe River had even reached 100%, and sulfa ARGs ( sul1 and sul2 ) in the seawater and Poyang Lake, as well as sul2 and sul3 in the Haihe River, had also reached 100%. The ARG pollution in Haihe River was much more serious, since 14 and 17 of 20 ARG species were significantly higher compared with seawater and Poyang Lake, respectively. Some ARGs also had a high absolute abundance. The absolute abundance of macrolide resistance genes ( ermB ) in seawater was as high as 8.61 × 10 7 copies/L, and the anti-tuberculosis resistant genes ( rpoB and katG ) in the Haihe River Basin were highly abundant at 1.32 × 10 6 copies/L and 1.06 × 10 7 copies/L, respectively. This indicates that ARGs have gradually become more diverse and extensive in natural water bodies. The results of a redundancy analysis (RDA) of the three water bodies showed that although each water body is affected by different factors in space and time, overall, the presence of AGRs is closely related to the production and life of human beings and the migration of animals.

Keywords: water body; ARGs; absolute abundance; redundancy analysis (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1660-4601/17/2/552/pdf (application/pdf)
https://www.mdpi.com/1660-4601/17/2/552/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:17:y:2020:i:2:p:552-:d:308974

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-22
Handle: RePEc:gam:jijerp:v:17:y:2020:i:2:p:552-:d:308974