EconPapers    
Economics at your fingertips  
 

Forecasting Flu Activity in the United States: Benchmarking an Endemic-Epidemic Beta Model

Junyi Lu and Sebastian Meyer
Additional contact information
Junyi Lu: Institute of Medical Informatics, Biometry, and Epidemiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
Sebastian Meyer: Institute of Medical Informatics, Biometry, and Epidemiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany

IJERPH, 2020, vol. 17, issue 4, 1-13

Abstract: Accurate prediction of flu activity enables health officials to plan disease prevention and allocate treatment resources. A promising forecasting approach is to adapt the well-established endemic-epidemic modeling framework to time series of infectious disease proportions. Using U.S. influenza-like illness surveillance data over 18 seasons, we assessed probabilistic forecasts of this new beta autoregressive model with proper scoring rules. Other readily available forecasting tools were used for comparison, including Prophet, (S)ARIMA and kernel conditional density estimation (KCDE). Short-term flu activity was equally well predicted up to four weeks ahead by the beta model with four autoregressive lags and by KCDE; however, the beta model runs much faster. Non-dynamic Prophet scored worst. Relative performance differed for seasonal peak prediction. Prophet produced the best peak intensity forecasts in seasons with standard epidemic curves; otherwise, KCDE outperformed all other methods. Peak timing was best predicted by SARIMA, KCDE or the beta model, depending on the season. The best overall performance when predicting peak timing and intensity was achieved by KCDE. Only KCDE and naive historical forecasts consistently outperformed the equal-bin reference approach for all test seasons. We conclude that the endemic-epidemic beta model is a performant and easy-to-implement tool to forecast flu activity a few weeks ahead. Real-time forecasting of the seasonal peak, however, should consider outputs of multiple models simultaneously, weighing their usefulness as the season progresses.

Keywords: influenza; forecasting; time series; beta regression; seasonality (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://www.mdpi.com/1660-4601/17/4/1381/pdf (application/pdf)
https://www.mdpi.com/1660-4601/17/4/1381/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:17:y:2020:i:4:p:1381-:d:323329

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:17:y:2020:i:4:p:1381-:d:323329