Quantifying the Effects of Visual Road Information on Drivers’ Speed Choices to Promote Self-Explaining Roads
Yuting Qin,
Yuren Chen and
Kunhui Lin
Additional contact information
Yuting Qin: The Key Laboratory of Road and Traffic Engineering, Ministry of Education, Shanghai 201804, China
Yuren Chen: The Key Laboratory of Road and Traffic Engineering, Ministry of Education, Shanghai 201804, China
Kunhui Lin: The Key Laboratory of Road and Traffic Engineering, Ministry of Education, Shanghai 201804, China
IJERPH, 2020, vol. 17, issue 7, 1-13
Abstract:
Roads should deliver appropriate information to drivers and thus induce safer driving behavior. This concept is also known as “self-explaining roads” (SERs). Previous studies have demonstrated that understanding how road characteristics affect drivers’ speed choices is the key to SERs. Thus, in order to reduce traffic casualties via engineering methods, this study aimed to establish a speed decision model based on visual road information and to propose an innovative method of SER design. It was assumed that driving speed is determined by road geometry and modified by the environment. Lane fitting and image semantic segmentation techniques were used to extract road features. Field experiments were conducted in Tibet, China, and 1375 typical road scenarios were picked out. By controlling variables, the driving speed stimulated by each piece of information was evaluated. Prediction models for geometry-determined speed and environment-modified speed were built using the random forest algorithm and convolutional neural network. Results showed that the curvature of the right boundary in “near scene” and “middle scene”, and the density of roadside greenery and residences play an important role in regulating driving speed. The findings of this research could provide qualitative and quantitative suggestions for the optimization of road design that would guide drivers to choose more reasonable driving speeds.
Keywords: road characteristics; speed choice; self-explaining road; random forest; convolutional neural network (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1660-4601/17/7/2437/pdf (application/pdf)
https://www.mdpi.com/1660-4601/17/7/2437/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:17:y:2020:i:7:p:2437-:d:340962
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().