EconPapers    
Economics at your fingertips  
 

Assessing Cadmium and Chromium Concentrations in Drinking Water to Predict Health Risk in Malaysia

Minhaz Farid Ahmed and Mazlin Bin Mokhtar
Additional contact information
Minhaz Farid Ahmed: Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia (UKM), UKM Bangi, Selangor 43600, Malaysia
Mazlin Bin Mokhtar: Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia (UKM), UKM Bangi, Selangor 43600, Malaysia

IJERPH, 2020, vol. 17, issue 8, 1-23

Abstract: Although toxic Cd (cadmium) and Cr (chromium) in the aquatic environment are mainly from natural sources, human activities have increased their concentrations. Several studies have reported higher concentrations of Cd and Cr in the aquatic environment of Malaysia; however, the association between metal ingestion via drinking water and human health risk has not been established. This study collected water samples from four stages of the drinking water supply chain at Langat River Basin, Malaysia in 2015 to analyze the samples by inductivity coupled plasma mass spectrometry. Mean concentrations of Cd and Cr and the time-series river data (2004–2014) of these metals were significantly within the safe limit of drinking water quality standard proposed by the Ministry of Health Malaysia and the World Health Organization. Hazard quotient (HQ) and lifetime cancer risk (LCR) values of Cd and Cr in 2015 and 2020 also indicate no significant human health risk of its ingestion via drinking water. Additionally, management of pollution sources in the Langat Basin from 2004 to 2015 decreased Cr concentration in 2020 on the basis of autoregression moving average. Although Cd and Cr concentrations were found to be within the safe limits at Langat Basin, high concentrations of these metals have been found in household tap water, especially due to the contamination in the water distribution pipeline. Therefore, a two-layer water filtration system should be introduced in the basin to achieve the United Nations Sustainable Development Goals (SDGs) 2030 agenda of a better and more sustainable future for all, especially via SDG 6 of supplying safe drinking water at the household level.

Keywords: Malaysia; Langat River Basin; drinking water; hazard quotient; lifetime cancer risk (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1660-4601/17/8/2966/pdf (application/pdf)
https://www.mdpi.com/1660-4601/17/8/2966/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:17:y:2020:i:8:p:2966-:d:350004

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:17:y:2020:i:8:p:2966-:d:350004