EconPapers    
Economics at your fingertips  
 

Individual Fit Testing of Hearing-Protection Devices Based on Microphones in Real Ears among Workers in Industries with High-Noise-Level Manufacturing

Chien-Chen Chiu and Terng-Jou Wan
Additional contact information
Chien-Chen Chiu: Doctoral Program, Graduate School of Engineering Science and Technology, National Yunlin University of Science and Technology, No. 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan
Terng-Jou Wan: Department of Safety Health and Environmental Engineering, National Yunlin University of Science and Technology, No. 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan

IJERPH, 2020, vol. 17, issue 9, 1-11

Abstract: Hearing-protection devices (HPDs) are particularly important in protecting the hearing of workers. The aim of this study was to prevent hearing damage in workplaces in Taiwan. It was conducted to determine the actual sound attenuation of the personal attenuation rating (PAR) values when wearing HPDs via measurements from field microphones in workers’ real ears (F-MIRE). Across 105 measurement trials for the Classic™ roll-down foam earplug HPDs worn by the workers, there were 23 cases of ineffective protection (including caution and fail); the proportion was 20% (including the first measurement and re-wear of HPDs after education and training). In addition, re-education and training in how to wear the HPDs was provided, improving wearing skills. A total of 29 testees wearing the Classic™ roll-down foam earplug HPDs failed to meet the pass standard for the first PAR test, and 6 of them improved and subsequently passed the PAR test. The improvement rate was 20%. These 23 testees switched to another HPD, namely Kneading-Free Push-Ins™ earplugs. From this group, 16 effective sound attenuation values were obtained, with an improvement rate of 70%. However, seven testees failed to pass the PAR test, and after education, training, and replacement of HPDs with different types, they still could not pass the PAR test. At that time, even if the UltraFit™ pre-molded earplugs were adopted again for wear and replacement, they were still unable to pass the PAR test. This HPD was eventually replaced with the PELTOR X4A Earmuff HPD and then tested again, with these HPDs finally passing the PAR test. In Taiwan, the use of fit testing has been increasing but it is not a common practice, and few studies on hearing-protection fit testing have been conducted in this country. The goal of this study was to gain more insight into the current hearing protection situation, including field attenuation of HPDs obtained by workers, the effects of training on improving the attenuation of HPDs after F-MIRE measurements, and the awareness of hearing health and motivation on the use of HPDs in a high-noise-level environment.

Keywords: hearing-protection device (HPD); noise exposure; personal attenuation rating (PAR); field microphone in real ear (F-MIRE); pre-workforce education (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1660-4601/17/9/3242/pdf (application/pdf)
https://www.mdpi.com/1660-4601/17/9/3242/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:17:y:2020:i:9:p:3242-:d:354567

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:17:y:2020:i:9:p:3242-:d:354567