EconPapers    
Economics at your fingertips  
 

Evaluation of Functional Abilities in 0–6 Year Olds: An Analysis with the eEarlyCare Computer Application

María Consuelo Sáiz-Manzanares, Raúl Marticorena-Sánchez and Álvar Arnaiz-González
Additional contact information
María Consuelo Sáiz-Manzanares: Departamento de Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad de Burgos, Research Group DATAHES, Pº Comendadores s/n, 09001 Burgos, Spain
Raúl Marticorena-Sánchez: Departamento de Ingeniería Informática, Escuela Politécnica Superior, Universidad de Burgos, Research Group ADMIRABLE, Escuela Politécnica Superior, Avd. de Cantabria s/n, 09006 Burgos, Spain
Álvar Arnaiz-González: Departamento de Ingeniería Informática, Escuela Politécnica Superior, Universidad de Burgos, Research Group ADMIRABLE, Escuela Politécnica Superior, Avd. de Cantabria s/n, 09006 Burgos, Spain

IJERPH, 2020, vol. 17, issue 9, 1-17

Abstract: The application of Industry 4.0 to the field of Health Sciences facilitates precise diagnosis and therapy determination. In particular, its effectiveness has been proven in the development of personalized therapeutic intervention programs. The objectives of this study were (1) to develop a computer application that allows the recording of the observational assessment of users aged 0–6 years old with impairment in functional areas and (2) to assess the effectiveness of computer application. We worked with a sample of 22 users with different degrees of cognitive disability at ages 0–6. The eEarlyCare computer application was developed with the aim of allowing the recording of the results of an evaluation of functional abilities and the interpretation of the results by a comparison with "normal development". In addition, the Machine Learning techniques of supervised and unsupervised learning were applied. The most relevant functional areas were predicted. Furthermore, three clusters of functional development were found. These did not always correspond to the disability degree. These data were visualized with distance map techniques. The use of computer applications together with Machine Learning techniques was shown to facilitate accurate diagnosis and therapeutic intervention. Future studies will address research in other user cohorts and expand the functionality of their application to personalized therapeutic programs.

Keywords: computer application; machine learning; early care; special needs (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1660-4601/17/9/3315/pdf (application/pdf)
https://www.mdpi.com/1660-4601/17/9/3315/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:17:y:2020:i:9:p:3315-:d:356101

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:17:y:2020:i:9:p:3315-:d:356101