EconPapers    
Economics at your fingertips  
 

Regression Tree Analysis for Stream Biological Indicators Considering Spatial Autocorrelation

Mi-Young Kim and Sang-Woo Lee
Additional contact information
Mi-Young Kim: Graduate Program, Department of Environmental Science, Konkuk University, Gwangjin-Gu, Seoul 05029, Korea
Sang-Woo Lee: Department of Forestry and Landscape Architecture, Konkuk University, Gwangjin-Gu, Seoul 05029, Korea

IJERPH, 2021, vol. 18, issue 10, 1-19

Abstract: Multiple studies have been conducted to identify the complex and diverse relationships between stream ecosystems and land cover. However, these studies did not consider spatial dependency inherent from the systemic structure of streams. Therefore, the present study aimed to analyze the relationship between green/urban areas and topographical variables with biological indicators using regression tree analysis, which considered spatial autocorrelation at two different scales. The results of the principal components analysis suggested that the topographical variables exhibited the highest weights among all components, including biological indicators. Moran?s I values verified spatial autocorrelation of biological indicators; additionally, trophic diatom index, benthic macroinvertebrate index, and fish assessment index values were greater than 0.7. The results of spatial autocorrelation analysis suggested that a significant spatial dependency existed between environmental and biological indicators. Regression tree analysis was conducted for each indicator to compensate for the occurrence of autocorrelation; subsequently, the slope in riparian areas was the first criterion of differentiation for biological condition datasets in all regression trees. These findings suggest that considering spatial autocorrelation for statistical analyses of stream ecosystems, riparian proximity, and topographical characteristics for land use planning around the streams is essential to maintain the healthy biological conditions of streams.

Keywords: regression tree analysis; biological indicators; spatial autocorrelation; land use; principal component analysis (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1660-4601/18/10/5150/pdf (application/pdf)
https://www.mdpi.com/1660-4601/18/10/5150/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:18:y:2021:i:10:p:5150-:d:553486

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:18:y:2021:i:10:p:5150-:d:553486