EconPapers    
Economics at your fingertips  
 

Characterization of a Lactiplantibacillus plantarum R23 Isolated from Arugula by Whole-Genome Sequencing and Its Bacteriocin Production Ability

Joana Barbosa, Helena Albano, Beatriz Silva, Maria Helena Almeida, Teresa Nogueira and Paula Teixeira
Additional contact information
Joana Barbosa: CBQF-Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4169-005 Porto, Portugal
Helena Albano: CBQF-Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4169-005 Porto, Portugal
Beatriz Silva: Colégio de São Gonçalo, 4600-014 Amarante, Portugal
Maria Helena Almeida: Colégio Internato dos Carvalhos, 4415-133 Pedroso, Portugal
Teresa Nogueira: Instituto Nacional de Investigação Agrária e Veterinária, I.P., 2780-157 Oeiras and 4485-655 Vairão, Portugal
Paula Teixeira: CBQF-Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4169-005 Porto, Portugal

IJERPH, 2021, vol. 18, issue 11, 1-13

Abstract: Lactiplantibacillus plantarum is one of the lactic acid bacteria species most used as probiotics and starter cultures in food production. Bacteriocin-producers Lpb. plantarum are also promising natural food preservatives. This study aimed to characterize Lpb. plantarum R23 and its bacteriocins (R23 bacteriocins). The genome sequence of Lpb. plantarum R23 was obtained by whole-genome sequencing (WGS) in an Illumina NovaSeq platform. The activity of Lpb. plantarum R23-produced bacteriocin against two Listeria monocytogenes strains (L7946 and L7947) was evaluated, and its molecular size was determined by tricine-SDS-PAGE. No virulence or antibiotic resistance genes were detected. Four 100% identical proteins to the class II bacteriocins (Plantaricin E, Plantaricin F, Pediocin PA-1 (Pediocin AcH), and Coagulin A) were found by WGS analysis. The small (<6.5 kDa) R23 bacteriocins were stable at different pH values (ranging from 2 to 8), temperatures (between 4 and 100 °C), detergents (all, except Triton X-100 and Triton X-114 at 0.01 g/mL), and enzymes (catalase and ?-amylase), did not adsorb to the producer cells, had a bacteriostatic mode of action and their maximum activity (AU/mL = 12,800) against two L. monocytogenes strains occurred between 15 and 21 h of Lpb. plantarum R23 growth. Lactiplantibacillus plantarum R23 showed to be a promising bio-preservative culture because, besides being safe, it produces a stable bacteriocin or bacteriocins (harbors genes encoding for the production of four) inhibiting pathogens as L. monocytogenes . Further studies in different food matrices are required to confirm this hypothesis and its suitability as a future starter culture.

Keywords: bio-preservation; Coagulin A; food safety; pediocin; plantaricin; starter culture (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1660-4601/18/11/5515/pdf (application/pdf)
https://www.mdpi.com/1660-4601/18/11/5515/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:18:y:2021:i:11:p:5515-:d:559221

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:18:y:2021:i:11:p:5515-:d:559221