EconPapers    
Economics at your fingertips  
 

A Convenient and Low-Cost Model of Depression Screening and Early Warning Based on Voice Data Using for Public Mental Health

Xin Chen and Zhigeng Pan
Additional contact information
Xin Chen: School of Medicine, Hangzhou Normal University, Hangzhou 311121, China
Zhigeng Pan: School of Medicine, Hangzhou Normal University, Hangzhou 311121, China

IJERPH, 2021, vol. 18, issue 12, 1-12

Abstract: Depression is a common mental health disease, which has great harm to public health. At present, the diagnosis of depression mainly depends on the interviews between doctors and patients, which is subjective, slow and expensive. Voice data are a kind of data that are easy to obtain and have the advantage of low cost. It has been proved that it can be used in the diagnosis of depression. The voice data used for modeling in this study adopted the authoritative public data set, which had passed the ethical review. The features of voice data were extracted by Python programming, and the voice features were stored in the format of CSV files. Through data processing, a big database, containing 1479 voice feature samples, was generated for modeling. Then, the decision tree screening model of depression was established by 10-fold cross validation and algorithm selection. The experiment achieved 83.4% prediction accuracy on voice data set. According to the prediction results of the model, the patients can be given early warning and intervention in time, so as to realize the health management of personal depression.

Keywords: public health; depression; voice data; decision tree; screening model; early warning (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1660-4601/18/12/6441/pdf (application/pdf)
https://www.mdpi.com/1660-4601/18/12/6441/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:18:y:2021:i:12:p:6441-:d:574811

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:18:y:2021:i:12:p:6441-:d:574811