EconPapers    
Economics at your fingertips  
 

Implementing an Individual-Centric Discharge Process across Singapore Public Hospitals

Reuben Ng and Kelvin Bryan Tan
Additional contact information
Reuben Ng: Lee Kuan Yew School of Public Policy, National University of Singapore, 469C Bukit Timah Rd, Singapore 259772, Singapore
Kelvin Bryan Tan: Ministry of Health, 16 College Road, Singapore 169854, Singapore

IJERPH, 2021, vol. 18, issue 16, 1-7

Abstract: Singapore is one of the first known countries to implement an individual-centric discharge process across all public hospitals to manage frequent admissions—a perennial challenge for public healthcare, especially in an aging population. Specifically, the process provides daily lists of high-risk patients to all public hospitals for customized discharge procedures within 24 h of admission. We analyzed all public hospital admissions ( N = 150,322) in a year. Among four models, the gradient boosting machine performed the best (AUC = 0.79) with a positive predictive value set at 70%. Interestingly, the cumulative length of stay (LOS) in the past 12 months was a stronger predictor than the number of previous admissions, as it is a better proxy for acute care utilization. Another important predictor was the “number of days from previous non-elective admission”, which is different from previous studies that included both elective and non-elective admissions. Of note, the model did not include LOS of the index admission—a key predictor in other models—since our predictive model identified frequent admitters for pre-discharge interventions during the index (current) admission. The scientific ingredients that built the model did not guarantee its successful implementation—an “art” that requires the alignment of processes, culture, human capital, and senior management sponsorship. Change management is paramount, otherwise data-driven health policies, no matter how well-intended, may not be accepted or implemented. Overall, our study demonstrated the viability of using artificial intelligence (AI) to build a near real-time nationwide prediction tool for individual-centric discharge, and the critical factors for successful implementation.

Keywords: predictive analytics; public healthcare; policy implementation; acute care; change management; Asia; aging policy (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://www.mdpi.com/1660-4601/18/16/8700/pdf (application/pdf)
https://www.mdpi.com/1660-4601/18/16/8700/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:18:y:2021:i:16:p:8700-:d:616331

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:18:y:2021:i:16:p:8700-:d:616331