EconPapers    
Economics at your fingertips  
 

Combination of Coagulation–Flocculation–Decantation and Ozonation Processes for Winery Wastewater Treatment

Nuno Jorge, Ana R. Teixeira, Carlos C. Matos, Marco S. Lucas and José A. Peres
Additional contact information
Nuno Jorge: Escuela Internacional de Doctorado (EIDO), Campus da Auga, Campus Universitário de Ourense, Universidade de Vigo, 32004 Ourense, Spain
Ana R. Teixeira: Centro de Química de Vila Real (CQVR), Departamento de Química, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
Carlos C. Matos: Centro de Química de Vila Real (CQVR), Departamento de Química, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
Marco S. Lucas: Centro de Química de Vila Real (CQVR), Departamento de Química, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
José A. Peres: Centro de Química de Vila Real (CQVR), Departamento de Química, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal

IJERPH, 2021, vol. 18, issue 16, 1-26

Abstract: This research assessed a novel treatment process of winery wastewater, through the application of a chemical-based process aiming to decrease the high organic carbon content, which represents a difficulty for wastewater treatment plants and a public health problem. Firstly, a coagulation–flocculation–decantation process (CFD process) was optimized by a simplex lattice design. Afterwards, the efficiency of a UV-C/ferrous iron/ozone system was assessed for organic carbon removal in winery wastewater. This system was applied alone and in combination with the CFD process (as a pre- and post-treatment). The coagulation–flocculation–decantation process, with a mixture of 0.48 g/L potassium caseinate and 0.52 g/L bentonite at pH 4.0, achieved 98.3, 97.6, and 87.8% removals of turbidity, total suspended solids, and total polyphenols, respectively. For the ozonation process, the required pH and ferrous iron concentration (Fe 2+ ) were crucial variables in treatment optimization. With the application of the best operational conditions (pH = 4.0, [Fe 2+ ] = 1.0 mM), the UV-C/ferrous iron/ozone system achieved 63.2% total organic carbon (TOC) removal and an energy consumption of 1843 kWh?m ?3 ?order ?1 . The combination of CFD and ozonation processes increased the TOC removal to 66.1 and 65.5%, respectively, for the ozone/ferrous iron/UV-C/CFD and CFD/ozone/ferrous iron/UV-C systems. In addition, the germination index of several seeds was assessed and excellent values (>80%) were observed, which revealed the reduction in phytotoxicity. In conclusion, the combination of CFD and UV-C/ferrous iron/ozone processes is efficient for WW treatment.

Keywords: coagulation–flocculation–decantation; germination index; ozone; potassium caseinate; UV-C radiation; winery wastewater (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.mdpi.com/1660-4601/18/16/8882/pdf (application/pdf)
https://www.mdpi.com/1660-4601/18/16/8882/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:18:y:2021:i:16:p:8882-:d:620001

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:18:y:2021:i:16:p:8882-:d:620001