EconPapers    
Economics at your fingertips  
 

Soil Organic Matter Responses to Mangrove Restoration: A Replanting Experience in Northeast Brazil

Laís Coutinho Zayas Jimenez, Hermano Melo Queiroz, Xosé Luis Otero, Gabriel Nuto Nóbrega and Tiago Osório Ferreira
Additional contact information
Laís Coutinho Zayas Jimenez: Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ-USP), Av. Pádua Dias 11, Piracicaba 13418-900, SP, Brazil
Hermano Melo Queiroz: Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ-USP), Av. Pádua Dias 11, Piracicaba 13418-900, SP, Brazil
Xosé Luis Otero: CRETUS Institute, Department of Soil Science and Agricultural Chemistry, School of Biology, University of Santiago de Compostela, 15705 Santiago de Compostela, Spain
Gabriel Nuto Nóbrega: Graduate Program in Earth Sciences (Geochemistry), Department of Geochemistry, Federal Fluminense University, Niterói 24020-141, RJ, Brazil
Tiago Osório Ferreira: Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ-USP), Av. Pádua Dias 11, Piracicaba 13418-900, SP, Brazil

IJERPH, 2021, vol. 18, issue 17, 1-11

Abstract: Mangroves are among the most relevant ecosystems in providing ecosystem services because of their capacity to act as sinks for atmospheric carbon. Thus, restoring mangroves is a strategic pathway for mitigating global climate change. Therefore, this study aimed to examine the organic matter dynamics in mangrove soils during restoration processes. Four mangrove soils under different developmental stages along the northeastern Brazilian coast were studied, including a degraded mangrove (DM); recovering mangroves after 3 years (3Y) and 7 years (7Y) of planting; and a mature mangrove (MM). The soil total organic carbon (C T ) and soil carbon stocks (SCSs) were determined for each area. Additionally, a demineralization procedure was conducted to assess the most complex humidified and recalcitrant fractions of soil organic matter and the fraction participating in organomineral interactions. The particle size distribution was also analyzed. Our results revealed significant differences in the SCS and C T values between the DM, 3Y and 7Y, and the MM, for which there was a tendency to increase in carbon content with increasing vegetative development. However, based on the metrics used to evaluate organic matter interactions with inorganic fractions, such as low rates of carbon enrichment, C recovery, and low C content after hydrofluoric acid (HF) treatment being similar for the DM and the 3Y and 7Y—this indicated that high carbon losses were coinciding with mineral dissolution. These results indicate that the organic carbon dynamics in degraded and newly planted sites depend more on organomineral interactions, both to maintain their previous SCS and increase it, than mature mangroves. Conversely, the MM appeared to have most of the soil organic carbon, as the stabilized organic matter had a complex structure with a high molecular weight and contributed less in the organomineral interactions to the SCS. These results demonstrate the role of initial mangrove vegetation development in trapping fine mineral particles and favoring organomineral interactions. These findings will help elucidate organic accumulation in different replanted mangrove restoration scenarios.

Keywords: carbon stock; organomineral interactions; blue carbon; ecosystem restoration (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1660-4601/18/17/8981/pdf (application/pdf)
https://www.mdpi.com/1660-4601/18/17/8981/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:18:y:2021:i:17:p:8981-:d:622289

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:18:y:2021:i:17:p:8981-:d:622289