Combined Multimorbidity and Polypharmacy Patterns in the Elderly: A Cross-Sectional Study in Primary Health Care
Grant Stafford,
Noemí Villén,
Albert Roso-Llorach,
Amelia Troncoso-Mariño,
Mònica Monteagudo and
Concepción Violán
Additional contact information
Grant Stafford: Programa de Máster en Salud Pública, Universitat Pompeu Fabra, 08003 Barcelona, Spain
Noemí Villén: Àrea del Medicament i Servei de Farmàcia, Atenció Primària Barcelona Ciutat, Institut Català de la Salut (ICS), 08015 Barcelona, Spain
Albert Roso-Llorach: Unitat Transversal de Recerca (UTR), Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), 08007 Barcelona, Spain
Amelia Troncoso-Mariño: Àrea del Medicament i Servei de Farmàcia, Atenció Primària Barcelona Ciutat, Institut Català de la Salut (ICS), 08015 Barcelona, Spain
Mònica Monteagudo: Unitat Transversal de Recerca (UTR), Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), 08007 Barcelona, Spain
Concepción Violán: Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain
IJERPH, 2021, vol. 18, issue 17, 1-22
Abstract:
(1) Background: The acquisition of multiple chronic diseases, known as multimorbidity, is common in the elderly population, and it is often treated with the simultaneous consumption of several prescription drugs, known as polypharmacy. These two concepts are inherently related and cause an undue burden on the individual. The aim of this study was to identify combined multimorbidity and polypharmacy patterns for the elderly population in Catalonia. (2) Methods: A cross-sectional study using electronic health records from 2012 was conducted. A mapping process was performed linking chronic disease categories to the drug categories indicated for their treatment. A soft clustering technique was then carried out on the final mapped categories. (3) Results: 916,619 individuals were included, with 93.1% meeting the authors’ criteria for multimorbidity and 49.9% for polypharmacy. A seven-cluster solution was identified: one non-specific (Cluster 1) and six specific, corresponding to diabetes (Cluster 2), neurological and musculoskeletal, female dominant (Clusters 3 and 4) and cardiovascular, cerebrovascular and renal diseases (Clusters 5 and 6), and multi-system diseases (Cluster 7). (4) Conclusions: This study utilized a mapping process combined with a soft clustering technique to determine combined patterns of multimorbidity and polypharmacy in the elderly population, identifying overrepresentation in six of the seven clusters with chronic disease and chronic disease-drug categories. These results could be applied to clinical practice guidelines in order to better attend to patient needs. This study can serve as the foundation for future longitudinal regarding relationships between multimorbidity and polypharmacy.
Keywords: multimorbidity; polypharmacy; elderly; primary healthcare; chronic disease; clustering; combined patterns; machine learning (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1660-4601/18/17/9216/pdf (application/pdf)
https://www.mdpi.com/1660-4601/18/17/9216/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:18:y:2021:i:17:p:9216-:d:626900
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().