EconPapers    
Economics at your fingertips  
 

Potential Use of Untreated Wastewater for Assessing COVID-19 Trends in Southern Italy

Osvalda De Giglio, Francesco Triggiano, Francesca Apollonio, Giusy Diella, Fabrizio Fasano, Pasquale Stefanizzi, Marco Lopuzzo, Silvia Brigida, Carla Calia, Chrysovalentinos Pousis, Angelo Marzella, Giuseppina La Rosa, Luca Lucentini, Elisabetta Suffredini, Giovanna Barbuti, Giuseppina Caggiano and Maria Teresa Montagna
Additional contact information
Osvalda De Giglio: Regional Reference Laboratory of SARS-CoV-2 in Wastewater, Department of Biomedical Science and Human Oncology, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy
Francesco Triggiano: Department of Biomedical Science and Human Oncology, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy
Francesca Apollonio: Department of Biomedical Science and Human Oncology, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy
Giusy Diella: Department of Biomedical Science and Human Oncology, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy
Fabrizio Fasano: Department of Biomedical Science and Human Oncology, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy
Pasquale Stefanizzi: Department of Biomedical Science and Human Oncology, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy
Marco Lopuzzo: Department of Biomedical Science and Human Oncology, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy
Silvia Brigida: National Research Council (CNR), Water Research Institute (IRSA), Via F. De Blasio, 5, 70132 Bari, Italy
Carla Calia: Department of Biomedical Science and Human Oncology, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy
Chrysovalentinos Pousis: Department of Biomedical Science and Human Oncology, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy
Angelo Marzella: Department of Biomedical Science and Human Oncology, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy
Giuseppina La Rosa: Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy
Luca Lucentini: Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy
Elisabetta Suffredini: Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
Giovanna Barbuti: Department of Biomedical Science and Human Oncology, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy
Giuseppina Caggiano: Department of Biomedical Science and Human Oncology, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy
Maria Teresa Montagna: Regional Reference Laboratory of SARS-CoV-2 in Wastewater, Department of Biomedical Science and Human Oncology, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy

IJERPH, 2021, vol. 18, issue 19, 1-14

Abstract: As a complement to clinical disease surveillance, the monitoring of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in wastewater can be used as an early warning system for impending epidemics. This study investigated the dynamics of SARS-CoV-2 in untreated wastewater with respect to the trend of coronavirus disease 2019 (COVID-19) prevalence in Southern Italy. A total of 210 wastewater samples were collected between May and November 2020 from 15 Apulian wastewater treatment plants (WWTP). The samples were concentrated in accordance with the standard of World Health Organization (WHO, Geneva, Switzerland) procedure for Poliovirus sewage surveillance, and molecular analysis was undertaken with real-time reverse-transcription quantitative PCR (RT-(q) PCR). Viral ribonucleic acid (RNA) was found in 12.4% (26/210) of the samples. The virus concentration in the positive samples ranged from 8.8 × 10 2 to 6.5 × 10 4 genome copies/L. The receiver operating characteristic (ROC) curve modeling showed that at least 11 cases/100,000 inhabitants would occur after a wastewater sample was found to be positive for SARS-CoV-2 (sensitivity = 80%, specificity = 80.9%). To our knowledge, this is the first study in Italy that has applied wastewater-based epidemiology to predict COVID-19 prevalence. Further studies regarding methods that include all variables (meteorological phenomena, characteristics of the WWTP, etc.) affecting this type of wastewater surveillance data would be useful to improve data interpretation.

Keywords: coronavirus; SARS-CoV-2; wastewater-based epidemiology; surveillance (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1660-4601/18/19/10278/pdf (application/pdf)
https://www.mdpi.com/1660-4601/18/19/10278/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:18:y:2021:i:19:p:10278-:d:646770

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:18:y:2021:i:19:p:10278-:d:646770