EconPapers    
Economics at your fingertips  
 

Mortality-Risk Prediction Model from Road-Traffic Injury in Drunk Drivers: Machine Learning Approach

Wachiranun Sirikul, Nida Buawangpong, Ratana Sapbamrer and Penprapa Siviroj
Additional contact information
Wachiranun Sirikul: Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
Nida Buawangpong: Department of Family Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
Ratana Sapbamrer: Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
Penprapa Siviroj: Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand

IJERPH, 2021, vol. 18, issue 19, 1-14

Abstract: Background: Alcohol-related road-traffic injury is the leading cause of premature death in middle- and lower-income countries, including Thailand. Applying machine-learning algorithms can improve the effectiveness of driver-impairment screening strategies by legal limits. Methods: Using 4794 RTI drivers from secondary cross-sectional data from the Thai Governmental Road Safety Evaluation project in 2002–2004, the machine-learning models (Gradient Boosting Classifier: GBC, Multi-Layers Perceptrons: MLP, Random Forest: RF, K-Nearest Neighbor: KNN) and a parsimonious logistic regression (Logit) were developed for predicting the mortality risk from road-traffic injury in drunk drivers. The predictors included alcohol concentration level in blood or breath, driver characteristics and environmental factors. Results: Of 4974 drivers in the derived dataset, 4365 (92%) were surviving drivers and 429 (8%) were dead drivers. The class imbalance was rebalanced by the Synthetic Minority Oversampling Technique (SMOTE) into a 1:1 ratio. All models obtained good-to-excellent discrimination performance. The AUC of GBC, RF, KNN, MLP, and Logit models were 0.95 (95% CI 0.90 to 1.00), 0.92 (95% CI 0.87 to 0.97), 0.86 (95% CI 0.83 to 0.89), 0.83 (95% CI 0.78 to 0.88), and 0.81 (95% CI 0.75 to 0.87), respectively. MLP and GBC also had a good model calibration, visualized by the calibration plot. Conclusions: Our machine-learning models can predict road-traffic mortality risk with good model discrimination and calibration. External validation using current data is recommended for future implementation.

Keywords: alcohol; drunk driver; road-traffic injury; machine learning (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1660-4601/18/19/10540/pdf (application/pdf)
https://www.mdpi.com/1660-4601/18/19/10540/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:18:y:2021:i:19:p:10540-:d:651586

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:18:y:2021:i:19:p:10540-:d:651586