EconPapers    
Economics at your fingertips  
 

Evaluation of an Ozone Chamber as a Routine Method to Decontaminate Firefighters’ PPE

Marcella A. de Melo Lucena, Félix Zapata, Filipe Gabriel M. Mauricio, Fernando E. Ortega-Ojeda, M. Gloria Quintanilla-López, Ingrid Távora Weber and Gemma Montalvo
Additional contact information
Marcella A. de Melo Lucena: BSTR, Fundamental Chemistry Department, Federal University of Pernambuco-UFPE, Avenida Prof. Luiz Freire, S/N, CDU, Recife 50740-540, Brazil
Félix Zapata: Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Grupo de Investigación CINQUIFOR, Ctra. Madrid-Barcelona km 33.6, 28871 Alcalá de Henares, Spain
Filipe Gabriel M. Mauricio: LIMA, Chemistry Institute, University of Brasilia-UNB, Brasilia 70904-970, Brazil
Fernando E. Ortega-Ojeda: Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Grupo de Investigación CINQUIFOR, Ctra. Madrid-Barcelona km 33.6, 28871 Alcalá de Henares, Spain
M. Gloria Quintanilla-López: Universidad de Alcalá, Departamento de Química Orgánica y Química Inorgánica, Ctra. Madrid-Barcelona km 33.6, 28871 Alcalá de Henares, Spain
Ingrid Távora Weber: LIMA, Chemistry Institute, University of Brasilia-UNB, Brasilia 70904-970, Brazil
Gemma Montalvo: Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Grupo de Investigación CINQUIFOR, Ctra. Madrid-Barcelona km 33.6, 28871 Alcalá de Henares, Spain

IJERPH, 2021, vol. 18, issue 20, 1-14

Abstract: Ozone chambers have emerged as an alternative method to decontaminate firefighters’ Personal Protective Equipment (PPE) from toxic fire residues. This work evaluated the efficiency of using an ozone chamber to clean firefighters’ PPE. This was achieved by studying the degradation of pyrene and 9-methylanthracene polycyclic aromatic hydrocarbons (PAHs). The following experiments were performed: (i) insufflating ozone into PAH solutions (homogeneous setup), and (ii) exposing pieces of PPE impregnated with the PAHs to an ozone atmosphere for up to one hour (heterogeneous setup). The ozonolysis products were assessed by Fourier Transform Infrared Spectroscopy (FTIR), Thin-Layer Chromatography (TLC), and Mass Spectrometry (MS) analysis. In the homogeneous experiments, compounds of a higher molecular weight were produced due to the incorporation of oxygen into the PAH structures. Some of these new compounds included 4-oxapyren-5-one (m/z 220) and phenanthrene-4,5-dicarboxaldehyde (m/z 234) from pyrene; or 9-anthracenecarboxaldehyde (m/z 207) and hydroxy-9,10-anthracenedione (m/z 225) from 9-methylanthracene. In the heterogeneous experiments, a lower oxidation was revealed, since no byproducts were detected using FTIR and TLC, but only using MS. However, in both experiments, significant amounts of the original PAHs were still present even after one hour of ozone treatment. Thus, although some partial chemical degradation was observed, the remaining PAH and the new oxygenated-PAH compounds (equally or more toxic than the initial molecules) alerted us of the risks to firefighters’ health when using an ozone chamber as a unique decontamination method. These results do not prove the ozone-advertised efficiency of the ozone chambers for decontaminating (degrading the toxic combustion residues into innocuous compounds) firefighters’ PPE.

Keywords: ozone; ozonolysis; firefighters; work safety; personal protective clothes (PPC); decontamination; polycyclic aromatic hydrocarbons (PAH) (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1660-4601/18/20/10587/pdf (application/pdf)
https://www.mdpi.com/1660-4601/18/20/10587/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:18:y:2021:i:20:p:10587-:d:652746

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:18:y:2021:i:20:p:10587-:d:652746