Landslide Susceptibility Assessment Using an AutoML Framework
Adrián G. Bruzón,
Patricia Arrogante-Funes,
Fátima Arrogante-Funes,
Fidel Martín-González,
Carlos J. Novillo,
Rubén R. Fernández,
René Vázquez-Jiménez,
Antonio Alarcón-Paredes,
Gustavo A. Alonso-Silverio,
Claudia A. Cantu-Ramirez and
Rocío N. Ramos-Bernal
Additional contact information
Adrián G. Bruzón: Department of Chemical and Environmental Technology, ESCET, Rey Juan Carlos University, 28933 Móstoles, Spain
Patricia Arrogante-Funes: Department of Chemical and Environmental Technology, ESCET, Rey Juan Carlos University, 28933 Móstoles, Spain
Fátima Arrogante-Funes: Grupo de Investigación en Teledetección Ambiental, Unidad Docente de Geografía, Geología y Medio Ambiente, Área de Geografía, Universidad de Alcalá, Filosofía y Letras, 28801 Alcalá de Henares, Spain
Fidel Martín-González: Área de Geología, ESCET, Universidad Rey Juan Carlos, 28933 Móstoles, Spain
Carlos J. Novillo: Research Group on Technologies for Landscape Analysis and Diagnosis (TADAT), Department of Chemical and Environmental Technology, ESCET, Rey Juan Carlos University, 28933 Móstoles, Spain
Rubén R. Fernández: Data Science Laboratory, Rey Juan Carlos University, 28933 Móstoles, Spain
René Vázquez-Jiménez: Cuerpo Académico UAGro CA-93 Riesgos Naturales y Geotecnología, FI, Universidad Autónoma de Guerrero, Chilpancingo 39070, Mexico
Antonio Alarcón-Paredes: Cuerpo Académico UAGro CA-178 Desarrollo Tecnológico Aplicado, Universidad Autónoma de Guerrero, Chilpancingo 39070, Mexico
Gustavo A. Alonso-Silverio: Cuerpo Académico UAGro CA-178 Desarrollo Tecnológico Aplicado, Universidad Autónoma de Guerrero, Chilpancingo 39070, Mexico
Claudia A. Cantu-Ramirez: Ingeniería para la Innovación y Desarrollo Tecnológico, Unidad Académica de Ingeniería Dependiente, Universidad Autónoma de Guerrero, Chilpancingo 39070, Mexico
Rocío N. Ramos-Bernal: Cuerpo Académico UAGro CA-93 Riesgos Naturales y Geotecnología, FI, Universidad Autónoma de Guerrero, Chilpancingo 39070, Mexico
IJERPH, 2021, vol. 18, issue 20, 1-20
Abstract:
The risks associated with landslides are increasing the personal losses and material damages in more and more areas of the world. These natural disasters are related to geological and extreme meteorological phenomena (e.g., earthquakes, hurricanes) occurring in regions that have already suffered similar previous natural catastrophes. Therefore, to effectively mitigate the landslide risks, new methodologies must better identify and understand all these landslide hazards through proper management. Within these methodologies, those based on assessing the landslide susceptibility increase the predictability of the areas where one of these disasters is most likely to occur. In the last years, much research has used machine learning algorithms to assess susceptibility using different sources of information, such as remote sensing data, spatial databases, or geological catalogues. This study presents the first attempt to develop a methodology based on an automatic machine learning (AutoML) framework. These frameworks are intended to facilitate the development of machine learning models, with the aim to enable researchers focus on data analysis. The area to test/validate this study is the center and southern region of Guerrero (Mexico), where we compare the performance of 16 machine learning algorithms. The best result achieved is the extra trees with an area under the curve (AUC) of 0.983. This methodology yields better results than other similar methods because using an AutoML framework allows to focus on the treatment of the data, to better understand input variables and to acquire greater knowledge about the processes involved in the landslides.
Keywords: landslide; hazard assessment; susceptibility; automatic machine learning (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.mdpi.com/1660-4601/18/20/10971/pdf (application/pdf)
https://www.mdpi.com/1660-4601/18/20/10971/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:18:y:2021:i:20:p:10971-:d:659601
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().