EconPapers    
Economics at your fingertips  
 

A Comparison of Bayesian Spatial Models for HIV Mapping in South Africa

Kassahun Abere Ayalew, Samuel Manda and Bo Cai
Additional contact information
Kassahun Abere Ayalew: School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Pietermaritzburg 3209, South Africa
Samuel Manda: School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Pietermaritzburg 3209, South Africa
Bo Cai: Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA

IJERPH, 2021, vol. 18, issue 21, 1-10

Abstract: Despite making significant progress in tackling its HIV epidemic, South Africa, with 7.7 million people living with HIV, still has the biggest HIV epidemic in the world. The Government, in collaboration with developmental partners and agencies, has been strengthening its responses to the HIV epidemic to better target the delivery of HIV care, treatment strategies and prevention services. Population-based household HIV surveys have, over time, contributed to the country’s efforts in monitoring and understanding the magnitude and heterogeneity of the HIV epidemic. Local-level monitoring of progress made against HIV and AIDS is increasingly needed for decision making. Previous studies have provided evidence of substantial subnational variation in the HIV epidemic. Using HIV prevalence data from the 2016 South African Demographic and Health Survey, we compare three spatial smoothing models, namely, the intrinsically conditionally autoregressive normal, Laplace and skew-t (ICAR-normal, ICAR-Laplace and ICAR-skew-t) in the estimation of the HIV prevalence across 52 districts in South Africa. The parameters of the resulting models are estimated using Bayesian approaches. The skewness parameter for the ICAR-skew-t model was not statistically significant, suggesting the absence of skewness in the HIV prevalence data. Based on the deviance information criterion (DIC) model selection, the ICAR-normal and ICAR-Laplace had DIC values of 291.3 and 315, respectively, which were lower than that of the ICAR-skewed t (348.1). However, based on the model adequacy criterion using the conditional predictive ordinates (CPO), the ICAR-skew-t distribution had the lowest CPO value. Thus, the ICAR-skew-t was the best spatial smoothing model for the estimation of HIV prevalence in our study.

Keywords: Bayesian; disease mapping; skew-t distribution; ICAR-normal; ICAR-Laplace; spatial random effects; spatial model (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1660-4601/18/21/11215/pdf (application/pdf)
https://www.mdpi.com/1660-4601/18/21/11215/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:18:y:2021:i:21:p:11215-:d:664701

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:18:y:2021:i:21:p:11215-:d:664701