National Holidays and Social Mobility Behaviors: Alternatives for Forecasting COVID-19 Deaths in Brazil
Dunfrey Pires Aragão,
Davi Henrique dos Santos,
Adriano Mondini and
Luiz Marcos Garcia Gonçalves
Additional contact information
Dunfrey Pires Aragão: Pós-Graduação em Engenharia Elétrica e de Computação, Universidade Federal do Rio Grande do Norte, Av. Salgado Filho, 3000, Lagoa Nova, Natal 59078-970, Brazil
Davi Henrique dos Santos: Pós-Graduação em Engenharia Elétrica e de Computação, Universidade Federal do Rio Grande do Norte, Av. Salgado Filho, 3000, Lagoa Nova, Natal 59078-970, Brazil
Adriano Mondini: Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista “Júlio Mesquita Filho”, Rodovia Araraquara-Jaú, Km 1, Campus Ville, Araraquara 14800-903, Brazil
Luiz Marcos Garcia Gonçalves: Pós-Graduação em Engenharia Elétrica e de Computação, Universidade Federal do Rio Grande do Norte, Av. Salgado Filho, 3000, Lagoa Nova, Natal 59078-970, Brazil
IJERPH, 2021, vol. 18, issue 21, 1-24
Abstract:
In this paper, we investigate the influence of holidays and community mobility on the transmission rate and death count of COVID-19 in Brazil. We identify national holidays and hallmark holidays to assess their effect on disease reports of confirmed cases and deaths. First, we use a one-variate model with the number of infected people as input data to forecast the number of deaths. This simple model is compared with a more robust deep learning multi-variate model that uses mobility and transmission rates ( R 0 , R e ) from a SEIRD model as input data. A principal components model of community mobility, generated by the principal component analysis (PCA) method, is added to improve the input features for the multi-variate model. The deep learning model architecture is an LSTM stacked layer combined with a dense layer to regress daily deaths caused by COVID-19. The multi-variate model incremented with engineered input features can enhance the forecast performance by up to 18.99% compared to the standard one-variate data-driven model.
Keywords: COVID-19; epidemiological SEIRD model; PCA; LSTM; time-series forecast (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1660-4601/18/21/11595/pdf (application/pdf)
https://www.mdpi.com/1660-4601/18/21/11595/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:18:y:2021:i:21:p:11595-:d:672086
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().