Differences in the Effects of Broad-Band UVA and Narrow-Band UVB on Epidermal Keratinocytes
Robert Bajgar,
Anna Moukova,
Nela Chalupnikova and
Hana Kolarova
Additional contact information
Robert Bajgar: Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Hnevotinska 3, 775 15 Olomouc, Czech Republic
Anna Moukova: Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Hnevotinska 3, 775 15 Olomouc, Czech Republic
Nela Chalupnikova: Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Hnevotinska 3, 775 15 Olomouc, Czech Republic
Hana Kolarova: Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Hnevotinska 3, 775 15 Olomouc, Czech Republic
IJERPH, 2021, vol. 18, issue 23, 1-10
Abstract:
Background: The sun is a natural source of UV radiation. It can be divided into three bands, UVA (315–400 nm), UVB (280–315 nm) and UVC (100–280 nm), where the radiation up to 290 nm is very effectively eliminated by the stratospheric ozone. Although UV radiation can have a beneficial effect on our organism and can be used in the treatment of several skin diseases, it must primarily be considered harmful. Methods: In the presented work, we focused on the study of the longer-wavelength UV components (UVA and UVB) on the human epidermal keratinocyte line HaCaT. As UVA and UVB radiation sources, we used commercially available UVA and UVB tubes from Philips (Philips, Amsterdam, The Netherlands), which are commonly employed in photochemotherapy. We compared their effects on cell viability and proliferation, changes in ROS production, mitochondrial function and the degree of DNA damage. Results: Our results revealed that UVB irradiation, even with significantly lower irradiance, caused greater ROS production, depolarization of mitochondrial membrane potential and greater DNA fragmentation, along with significantly lowering cell viability and proliferative capacity. Conclusions: These results confirm that UV radiation causes severe damages in skin cells, and they need to be protected from it, or it needs to be applied more cautiously, especially if the component used is UVB.
Keywords: UV radiation; photoageing; reactive oxygen species; DNA damage (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1660-4601/18/23/12480/pdf (application/pdf)
https://www.mdpi.com/1660-4601/18/23/12480/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:18:y:2021:i:23:p:12480-:d:689076
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().