Differential Cutaneous Thermal Sensitivity in Humans: Method of Limit vs. Method of Sensation Magnitude
Yongsuk Seo and
Jung-Hyun Kim
Additional contact information
Yongsuk Seo: Sports AIX Graduate Program, Pohang University of Science and Technology, Pohang 37673, Korea
Jung-Hyun Kim: Department of Sports Medicine, Kyung Hee University, Yongin-si 17104, Korea
IJERPH, 2021, vol. 18, issue 23, 1-8
Abstract:
Introduction: The method of limits (MLI) and method of level (MLE) are commonly employed for the quantitative assessment of cutaneous thermal sensitivity. Thermal sensation and thermal comfort are closely related and thermal sensations evoked from the peripheral thermoreceptors play an important role in thermoregulatory response to maintain normal body temperature. The purpose of this study was to compare the regional distribution of cutaneous warm and cold sensitivity between MLI and the method of sensation magnitude (MSM). Method: Twenty healthy men completed MLI and MSM to compare the regional distribution of cutaneous warm and cold sensitivity in the thermal neutral condition. The subjects rested on a bed in a supine position for 20 min. Next, the cutaneous thermal sensitivity of ten body sites was assessed by the means of MLI and MSM for both warmth and cold stimuli. Results: The absolute mean heat flux in MLI and thermal sensation magnitude in MSM showed significantly greater sensitivity to cold than to warm stimulation ( p < 0.01), together with a similar pattern of regional differences across ten body sites. Both sensory modalities indicated acceptable reliability (SRD%: 6.29–8.66) and excellent reproducibility (ICC: 0.826–0.906; p < 0.01). However, the Z-sore distribution in MSM was much narrower than in MLI, which may limit the test sensitivity for the detection of sensory disorders and/or comparison between individuals. Conclusion: The present results showed that both MLI and MSM are effective means for evaluating regional cutaneous thermal sensitivity to innocuous warm and cold stimulations to a strong degree of reliability and reproducibility.
Keywords: thermoregulation; body temperature; thermal sensation; thermal comfort (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1660-4601/18/23/12576/pdf (application/pdf)
https://www.mdpi.com/1660-4601/18/23/12576/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:18:y:2021:i:23:p:12576-:d:690782
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().