Transfer of Macronutrients, Micronutrients, and Toxic Elements from Soil to Grapes to White Wines in Uncontaminated Vineyards
Justin B. Richardson and
Jahziel K. Chase
Additional contact information
Justin B. Richardson: Department of Geosciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
Jahziel K. Chase: Department of Geosciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
IJERPH, 2021, vol. 18, issue 24, 1-17
Abstract:
Wine is a popular beverage and may be a source of nutrient and toxic elements during human consumption. Here, we explored the variation in nutrient and toxic elements from soils to grape berries and commercial white wines (Chardonnay) at five USA vineyards (New York, Vermont, California, Virginia) with strongly contrasting geology, soils, and climates. Samples were analyzed for macronutrients (Ca, K, and Mg), micronutrients (Mn, Cu, and Zn), and toxic elements (As, Cd, and Pb). Our study showed contrasting macronutrient, micronutrient, and toxic element concentrations in soils and in vines, leaves, and grapes. However, plant tissue concentrations did not correspond with total soil concentrations, suggesting a disconnect governing their accumulation. Bioconcentration factors for soil to grape berry transfer suggest the accumulation of Ca, K and Mg in berries while Fe, Mn, Cu, Zn, and Pb were generally not accumulated in our study or in previous studies. Wines from the five vineyards studied had comparable nutrient, micronutrient, and toxic metal concentrations as wines from Germany, Italy, Portugal, Spain, Croatia, Czech Republic, and Japan. The transfer of nutrients and toxic elements from grape berries to wine indicated that only Ca, K, and Mg were added or retained while concentrations of all other micronutrients and toxic elements were somewhat to extensively diminished. Thus, there appears to be a substantial effect on the geochemistry of the wine from the grape from either the fermentation process (i.e., flocculation), or a dilution effect. We conclude that soils, geology, and climate do not appear to generate a unique geochemical terroir as the transfer and concentration of inorganic nutrients appear to be comparable across strongly contrasting vineyards. This has several implications for human health. Nutrients in wine have potential impacts for human nutrition, as wine can meet or exceed the recommended dietary requirements of Ca, K, Mg, and Fe, and toxic metals As and Pb concentrations were also non-trivial.
Keywords: biogeochemistry; plant–soil interactions; wine composition; trace element transfer (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1660-4601/18/24/13271/pdf (application/pdf)
https://www.mdpi.com/1660-4601/18/24/13271/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:18:y:2021:i:24:p:13271-:d:703895
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().