A Novel Predictor for Micro-Scale COVID-19 Risk Modeling: An Empirical Study from a Spatiotemporal Perspective
Sui Zhang,
Minghao Wang,
Zhao Yang and
Baolei Zhang
Additional contact information
Sui Zhang: College of Geography and Environment, Shandong Normal University, Jinan 250014, China
Minghao Wang: College of Geography and Environment, Shandong Normal University, Jinan 250014, China
Zhao Yang: College of Geography and Environment, Shandong Normal University, Jinan 250014, China
Baolei Zhang: College of Geography and Environment, Shandong Normal University, Jinan 250014, China
IJERPH, 2021, vol. 18, issue 24, 1-16
Abstract:
Risk assessments for COVID-19 are the basis for formulating prevention and control strategies, especially at the micro scale. In a previous risk assessment model, various “densities” were regarded as the decisive driving factors of COVID-19 in the spatial dimension (population density, facility density, trajectory density, etc.). However, this conclusion ignored the fact that the “densities” were actually an abstract reflection of the “contact” frequency, which is a more essential determinant of epidemic transmission and lacked any means of corresponding quantitative correction. In this study, based on the facility density (FD), which has often been used in traditional research, a novel micro-scale COVID-19 risk predictor, facility attractiveness (FA, which has a better ability to reflect “contact” frequency), was proposed for improving the gravity model in combination with the differences in regional population density and mobility levels of an age-hierarchical population. An empirical analysis based on spatiotemporal modeling was carried out using geographically and temporally weighted regression (GTWR) in the Qingdao metropolitan area during the first wave of the pandemic. The spatiotemporally nonstationary relationships between facility density (attractiveness) and micro-risk of COVID-19 were revealed in the modeling results. The new predictors showed that residential areas and health-care facilities had more reasonable impacts than traditional “densities”. Compared with the model constructed using FDs (0.5159), the global prediction ability (adjusted R 2 ) of the FA model (0.5694) was increased by 10.4%. The improvement in the local-scale prediction ability was more significant, especially in high-risk areas (rate: 107.2%) and densely populated areas (rate in Shinan District: 64.4%; rate in Shibei District: 57.8%) during the outset period. It was proven that the optimized predictors were more suitable for use in spatiotemporal infection risk modeling in the initial stage of regional epidemics than traditional predictors. These findings can provide methodological references and model-optimized ideas for future micro-scale spatiotemporal infection modeling.
Keywords: COVID-19; gravity model; geographically and temporally weighted regression (GTWR); spatiotemporal risk modeling; Qingdao (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1660-4601/18/24/13294/pdf (application/pdf)
https://www.mdpi.com/1660-4601/18/24/13294/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:18:y:2021:i:24:p:13294-:d:704421
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().